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Abstract. It is shown that an estimator of an unknown average quadratic deviation defined

by the law of the iterated logarithm is not defined for “almost every” infinite sample in RN .

It is constructed a certain modification of this estimator which employs the strong objectivity

property.
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1. Introduction. The notion of a Haar ambivalent introduced by Balka, Buc-
zolich and Elekes [1], has been used in [2] in studying the properties of some infinite
sample statistics and in explaining why the Null Hypothesis is sometimes rejected for
“almost every” infinite sample by some Hypothesis Testing of maximal reliability. To
confirm that the conjectures of Jum Nunnally [3] and Jacob Cohen [4] fail for infinite
samples, examples of the so called objective and strong objective infinite sample well-
founded estimates of a useful signal in the linear one-dimensional stochastic model
were constructed in [2] by using the axiom of choice and a certain partition of the
non-locally compact abelian Polish group RN constructed in [5]. More late, in [6] has
been demonstrated that an estimate constructed in [7] also is a nice counterexample
to Nunnally-Cohen conjectures.

In the present paper we focus on the statistical structure defined by the law of the
iterated logarithm and study its properties. More precisely, we show that basic statistic
is not defined for “almost every” infinite sample in RN , but admits a strong objective
modification.

The paper is organised as follows. In Section 2 some auxiliary notions and facts
from the functional analysis and measure theory are considered. In Section 3 the main
result is presented.

2. Auxiliary notions and facts from the functional analysis and measure
theory

Lemma 2.1. Let RN be a Polish topological vector space of all real valued sequences
equipped with Tychonoff metric. For J ⊆ N, we put

AJ = {(xi)i∈N : xi ≥ 0 for i ∈ J & xi < 0 for i ∈ N \ J}

and Φ = {AJ : J ⊆ N}. Then every element of Φ is Haar ambivalent, AJ1 ∩ AJ2 = ∅
for all different J1, J2 ⊆ N and Φ is such a partition of RN that card(Φ) = 2ℵ0.

Remark 2.1. The proof of Lemma 2.1 is similar to the proof of Lemma 15.1.3
(see, [8], p. 202). Concerning main notions and facts about shy and Haar ambivalent
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sets, prevalences and probes in Polish topological vector spaces the reader can consult
with [1], [9], [10].

Definition 2.1. The family of probability spaces (RN,B(RN), µθ)θ∈Θ, where RN

is the vector space of all real valued sequences, B(RN) is the σ-algebra of all Borel
subsets ofRN generated by product topology, (µN

θ )θ∈Θ is the family of Borel probability
measures in RN and Θ is a non-empty set, is called a statistical structure.

Definition 2.2. Let Θ be a non-empty set and let S(Θ) be a minimal σ-algebra
of subsets of Θ generated by singletons of Θ. A (B(RN),S(Θ)) - measurable function
T : RN → Θ is called an infinite sample well-founded estimate of a parameter θ for
the statistical structure (RN,B(RN), µθ)θ∈Θ, if the condition

(i)µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & T((xk)k∈N) = θ}) = 1

holds for each θ ∈ Θ.
In addition, if the following two conditions
(ii) (∀θ)(θ ∈ Θ → T−1(θ) is Haar ambivalent);
(iii) (∀θ1, θ2)(θ1, θ2 ∈ Θ → there exists an isometric (with respect to Tychonov
metric) transformation A(θ1,θ2) of R

N such that A(θ1,θ2)(T
−1(θ1))∆T−1(θ2)

is shy)
hold true, then T is called strong objective infinite sample well-founded estimate of a
parameter θ for the statistical structure (RN,B(RN), µθ)θ∈Θ.

3. On a statistical structure defined by the Law of the iterated logarithm

Lemma 3.1. ([11], Theorem 1, p. 385) Let Pθ be a probability measure in R defined
by the random variable with mean zero and average quadratic deviation θ(θ > 0). Then
for each θ > 0 we have

PN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & lim sup

n→∞

∑n
k=1 xk√

2n log logn
= θ} = 1.

Remark 3.1. Note that under condition of Lemma 3.1, the family of probability
measures (RN,B(RN),Pθ)θ>0 stands for the statistical structure defined by the law of
iterated logarithm. The result of Lemma 3.2 asserts that the infinite sample statistic
T : RN → (0,∞) defined by T((xk)k∈N) = lim supn→∞

∑n
k=1 xk/

√
2n log logn for

(xk)k∈N ∈ RN is an infinite sample consistent estimate of the unknown parameter θ
for the statistical structure (RN,B(RN),Pθ)θ>0.

Lemma 3.2. A set S, defined by

S = {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n→∞

|
∑n

k=1 xk|√
2n log logn

exists and is finite}

is a Borel shy set in RN.
Proof. It is obvious that S is a vector subspace of RN. We have to show that S

is a Borel subset of RN. For i ∈ N, we denote by Pri i-th projection on RN defined
byPri((xk)k∈N) = xi for (xk)k∈N ∈ RN. We put Tn = |

∑n
i=1Pri|/

√
2n log logn for

n ∈ N. We get

{(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n→∞

|
∑n

k=1 xk|√
2n log logn

exists and is finite}
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= {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n→∞

|
∑n

k=1 xk|√
2n log logn

< ∞}

= ∪∞
s=1{(xk)k∈N : (xk)k∈N ∈ RN & lim sup

n→∞

|
∑n

k=1 xk|√
2n log logn

< s}.

Since limTn = infn supm≥n Tn is a Borel measurable function in RN we claim that S
is a Borel subset in RN.

We put v = (vn)n∈N where vn = 0 for 1 ≤ n ≤ 10, v11 = 11
√

22 log log 11) and

vn = (n + 1)
√

2(n+ 1) log log(n+ 1) − n
√

2n log log n) for n > 11. Let us show that
v spans a line L such that every translate of L meets S in at most one point; in
particular, L is a probe for the complement of S. Indeed, assume the contrary. Then
there will be an element (zk)k∈N ∈ RN and two different parameters t1, t2 ∈ R such
that (zk)k∈N+ t1v ∈ S and (zk)k∈N+ t2v ∈ S. Since S is a vector space we deduce that
(t2 − t1)v ∈ S. Using the same argument we claim that v ∈ S because t2 − t1 ̸= 0, but
the latter relation is false. This ends the proof of Lemma 3.2.

Corollary 3.1. For (xk)k∈N ∈ RN we put T((xk)k∈N) = lim supn→∞
|
∑n

k=1 xk|√
2n log logn

if

lim supn→∞
|
∑n

k=1 xk|√
2n log logn

exists and is finite. Then for ”almost every” infinite sample the
function T is not defined.

Proof. Let us denote by A the set of all points (xk)k∈N ∈ RN for which the function
T is not defined. It is obvious that A = RN \ S, where S comes from Lemma 3.2. By
Lemma 3.2 we know that S is a Borel shy set. Hence A = RN \ S is prevalence and
Corollary 3.1 is proved.

Theorem 3.1. Let µθ be a Borel probability measure in R defined by the distribution
function of the random variable Y with means zero and θ2 variance. For (xk)k∈N ∈
RN we put T1((xk)k∈N) = lim supn→∞

|
∑n

k=1 xk|√
2n log logn

if lim supn→∞
|
∑n

k=1 xk|√
2n log logn

exists and

is finite, and T1((xk)k∈N) = 1, otherwise. Then T1 is a subjective infinite sample
consistent estimate of the parameter θ ∈ (0,∞).

Proof. According to Lemma 3.1, we have

µN
θ ({(xk)k∈N : (xk)k∈N ∈ RN & T1((xk)k∈N) = θ}) = 1

for each θ > 0.
Note that T1 is subjective because the set T−1

1 (1) is a complement of the shy set
S \ S1, where S comes from Lemma 3.2 and

S1 = {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n→∞

|
∑n

k=1 xk|√
2n log logn

= 1}.

This ends the proof of the theorem.
Example 3.1. Let us denote by P(N) powerset of the set of all natural numbers,

and by ϕ a one-to-one mapping of R+ onto P(N), where R+ = (0,+∞). We put

Sθ = {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n→∞

|
∑n

k=1 xk|√
2n log log n

= θ}

for each θ ∈ R+.
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Since S = ∪θ∈R+Sθ and Sθ1 ∩ Sθ2 = ∅ for different θ1, θ2 ∈ R+, by Lemma 3.2 we
deduce that Sθ is shy for each θ ∈ R+.

We set Dθ = (Aϕ(θ) \ S) ∪ Sθ for θ ∈ R+, where Aϕ(θ) comes from Lemma 2.1.
Then (Dθ)θ∈R will be Borel partition of RN such that Dθ is a Haar ambivalent for
θ ∈ R+ and for all θ1, θ2 ∈ R+ there exists an isometric (w.r.t. Tychonov metric)
transformation A(θ1,θ2) of the R∞ such that A(θ1,θ2)(Dθ1)∆Dθ1 is shy. We can define
A(θ1,θ2) as follows: for (xk)k∈N ∈ RN we put A(θ1,θ2)((xk)k∈N) = (yk)k∈N, where yk = xk

if k ∈ ϕ(θ1) ∩ ϕ(θ2) and yk = −xk otherwise.
We put T ◦((xk)k∈N) = θ if (xk)k∈N ∈ Dθ.
Now it is not hard to show that under conditions of Lemma 3.1, T ◦ is a strong ob-

jective infinite sample well-founded estimate of a parameter θ for the family (µN
θ )θ∈R+ .
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