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ON ONE TWO-DIMENSIONAL MODEL BASED ON MAXWELL’S SYSTEM
Kiguradze Z., Kratsashvili M.

Abstract. One two-dimensional nonlinear partial integro-differential equation is considered.
The model is based on Maxwell’s system which arises at describing penetration of a magnetic
field into a substance. The initial-boundary value problem with homogeneous boundary con-
ditions is considered. Large time behavior of solution of the initial-boundary value problem
is studied. Rate of stabilization is given.

Keywords and phrases: Nonlinear integro-differential equation, asymptotic behavior.

AMS subject classification: 35K55, 35R09, 74H40, 35B40.

Mathematical modeling of diffusion of a magnetic field into a substance whose elec-
tric conductivity depends on temperature is described by system of Maxwell’s equations
[1]. If the coefficient of thermal heat capacity and electroconductivity of the substance
depend on temperature, then Maxwell’s system can be reduced to the following integro-
differential form [2]:
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where H = (Hy, Ho, H3) is a vector of the magnetic field and function a = a(S) is
defined for S € [0, 00).

Note that integro-differential model (1) is complex and still yields to the investiga-
tion for special cases (see, for example, [2] - [10] and references therein).

Let us consider one component and two dimensional magnetic field, i.e., assume that
the vector of magnetic field has the following form H = (0,0,U) and U = U(z,y,t).

Then we have
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Therefore, (1) takes the following form
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In [9] some generalization of the system of type (1) is proposed. In particular,
assuming the temperature of the considered body to be constant throughout the mate-
rial, i.e., depending on time, but independent of the space coordinates, the process of
penetration of the magnetic field into the material is modeled by, so-called, averaged
integro-differential model, (2) type analog of which has the following form
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and Q = [0, 1] x [0, 1].

Many scientific works are dedicated to the investigations of one-dimensional case
of (1) type models (see, for example, [2] - [10] and references therein). The existence
and uniqueness of the solutions of the initial-boundary value problems for the one-
dimensional analog of (2) and (3), (4) type models are studied in a number of works
(see, for example, [2], [3], [5], [9] and reference therein). Questions of existence and
uniqueness of solutions in multi-dimensional case for (1) type models are considered in
[4], [9] and for averaged (3), (4) type models in [5]. Asymptotic behavior of solutions
and issues of approximate solutions are considered in many works as well (see, for
example, [5] - [8] and references therein).

Our aim is to study the asymptotic behavior of solutions as t — oo for the Dirich-
let initial-boundary value problem with homogeneous boundary conditions for two-
dimensional equation (3), (4). Attention will be paid to the case a(S) = (1 + 5)?,
0<p<l.

Therefore, let us consider the following initial-boundary value problem:

where
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where

S(t) = j / (2—92 (%)2 dedydr, (8)
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a(S)=(1+5)7,0< p <1and Uy = Uy(z,y) is a given function, 952 is a boundary of Q.
The following theorem takes place.
Theorem. If a(S) = (1+S5)P, 0 < p < 1; Uy € H(0,1), then for the solution of
problem (5)-(8) the following estimate is true

Here H}(0,1) is the Sobolev space, norm is an usual norm of space Ly(Q2) and C' is
positive constant independent of ¢.

Numerous numerical experiments for different initial and boundary data are ful-
filled. All experiments were carried out by using software FreeFem++ [11]. In pictures
(Figs. 1 and 2) below there are numerical solutions for the two-dimensional equation
(5) with homogeneous Dirichlet boundary conditions. From these figures can be de-
duced that when time is increasing solution is vanishing, that was shown theoretically
in the theorem above.
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Fig.1. The numerical solution u at t = 1.
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Fig.2. The numerical solution u at t = 2.
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