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Suppose {Ω,ℑ, P} is a probability space; L2 = L2 ([0, 1]× Ω) is a space of real-

valued functions having finite second-order moments ∥x∥2 = E
∫ 1

0
x2(t)dt < ∞ . The

scalar product in this space has the form (x, y) = E
∫ 1

0
x(t)y(t)dt. Suppose w(t) is the

Wiener process.
Consider the boundary value problem

y′′(t) + α(t)y(t) = w′(t), (1)

y′(0) = y′(1) = 0, (modP ), t ∈ [0, 1].

where α(t) satisfies the following conditions

α(t) = a(t) +

∫ 1

0

A(t, s)dw(s). (2)

a(t) and A(t, s) are non-random functions a(t) ∈ L2([0, 1]), and A(t, s) ∈ L2([0, 1]
2).

Then α(t) ∈ L2 ([0, 1]× Ω) and represents a Gaussian process for which Eα(t) = a(t)
and the correlation kernel has the form

K(t, s) = a(t)a(s) +

∫ 1

0

A(t, τ)A(s, τ)dτ.

Consider the problem equivalent to (1):

y′(t) +

∫ t

0

α(s)y(s)ds = w(t),

∫ 1

0

α(s)y(s)ds = w(1), (modP ).

Our aim is to construct the solution of (1). Therefore, we consider the direct and
inverse problems

y′′1(t) + α(t)y1(t) = 0,

y1(0) = 1, y′1(0) = 0,
(3)
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y′′2(t) + α(t)y2(t) = 0,

y2(1) = 1, y′2(1) = 0.
(4)

The above-listed properties of the function α(t) satisfy the existence and uniqueness
conditions of the solutions of (3), (4).

The Wronskian of this system is V (t) = y1(1) ̸= 0. Hence the system y1, y2 is
independent.

Construct Green’s function for this problem

G(t, s) =

{
y1(t)y2(s)V

−1(0), t ≤ s,
y1(s)y2(t)V

−1(0), t > s.
(5)

Let us try to write the solution of problem (1) in the Daletsky-Skorokhod extended
stochastic integral of the form

y(t) =

∫ 1

0

⟨G(t, s), dw(s)⟩ . (6)

First we have to show the existence of this integral. Consider the expression

E

∫ 1

0

(
δG(t, s)

δw(u)

)2

du.

Note that
δα(t)

δw(u)
= A(t, u) and

δy1(t)

δw(u)
=

∞∑
k=1

(−1)k
∫ t

0

∫ λ1

0

∫ λ2

0

...

∫ λ2k−1

0

k∑
i=1

A(t2i, u)
k∏

j=1
j ̸=i

α(λ2j)dλ2k · ... · dλ3dλ2dλ1,

δy2(t)

δw(u)
=

∞∑
k=1

(−1)k
∫ 1

t

∫ 1

λ1

∫ 1

λ2

...

∫ 1

λ2k−1

k∑
i=1

A(t2i, u)
k∏

j=1
j ̸=i

α(λ2j)dλ2k · ... · dλ3dλ2dλ1.

Take into consideration that for Gaussian values we have

E
n∏

k=1

α(t2k) = 0, for n = 2m− 1, m = 1, 2, ...,

E

n∏
k=1

α(t2k) ≤ (2m− 1)!!Am, for n = 2m, m = 1, 2, ...,

where the constant A is selected so that∫ 1

0

A(t, s)ds < A.

Thus,∫ 1

0

E

[
δy1(t)

δw(u)
y2(s)V

−1(0)

]2
du ≤

∫ 1

0

E

[
∞∑
k=1

∞∑
m=0

(−1)k+m

∫ t

0

∫ λ1

0

...

∫ λ2k−1

0

∫ 1

t

·



50 Gogolashvili D., Sokhadze G., Tkeshelashvili A.

...

∫ λ2k−1

0

∫ 1

t

∫ 1

τ1

...

∫ 1

τ2m−1

k∑
i=1

A(t2k, u)
k∏

j,m=1
j ̸=i

α(λ2j)α(τ2m)dτ2m...dτ1dλ2j...dλ1


2

du

≤
∞∑
k=1

∞∑
m=1

(2m− 1)!!Am∏m
i=1(2i+ 1)!

< ∞.

Similarly, for the second component we have∫ 1

0

E

[
y1(t)

δy2(s)

δw(u)
V −1(0)

]2
du < ∞.

These estimates show that there exist necessary moments of a stochastic derivative,
which ensures the existence of the Daletsky-Skorokhod (6) stochastic integral. Thus
we have proved the validity of the following statement.

Theorem 1. If for boundary value problem (1) Condition (2) is satisfied, where
a(t) ∈ L2([0, 1]) and A(t, s) ∈ L2([0, 1]

2) then Problem (1) has a unique solution with
probability 1, which will be given in a stochastic integral form (6), where Green’s func-
tion G(t, s) is defined by Formula (5) using initial Problems (3) and (4).

Suppose we have the second boundary value problem for the following equation

y′′(t) + a(t)y(t) = w′(t) + f ′(t), (7)

y′(0) = y′(1) = 0, (modP ), t ∈ [0, 1],

where f(t) ∈ W 1([0, 1]) and a(t) are determined continuous functions. By virtue of
Theorem 1 the solution of this problem can be written in the form of a usual stochastic
integral

y(t) =

∫ 1

0

G(t, s)dw(t) +

∫ 1

0

G(t, s)df(s).

Together with problem (7) consider the problem:

x′′(t) + a(t)x(t) = w(t), (8)

x′(0) = x′(1) = 0, (modP ), t ∈ [0, 1].

It is evident that for these two processes we have the equality

y(t) = x(t) +

∫ 1

0

G(t, s)dw2(t). (9)

Suppose µy and µx , respectively, are distributions y(t) and x(t) of stochastic processes.
We are interested in probability continuity of these measures with respect to each other.

Note that measures µy and µx are real-valued Gaussian measures in a Lebesgue
measure space L2([0, 1]) of square integrable functions and the mean value of µy is

Ey(t) = E

[∫ 1

0

G(t, s)dw(s) +

∫ 1

0

G(t, s)df(s)

]
=

∫ 1

0

G(t, s)df(s),
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while the correlation kernel is given by the formula

Ry(t, s) = Ey(t)y(s) = E

[∫ 1

0

G(t, τ)dw(τ) +

∫ 1

0

G(t, τ)df(τ)

]
·
[∫ 1

0

G(s, τ)dw(τ)

+

∫ 1

0

G(s, τ)df(τ)

]
=

∫ 1

0

G(t, τ)G(s, τ)dτ +

[∫ 1

0

G(t, τ)df(τ)

]2
.

In a similar way we can calculate the characteristics of the measure µx:

Ex(t) = 0, Rx(t, s) =

∫ 1

0

G(t, τ)G(s, τ)dτ.

According to Equalities (9) the equivalence of these measure requires that the nec-
essary and sufficient condition

b(t) =

∫ 1

0

G(t, s)df(s) ∈ KxL2([0, 1]), (10)

should be satisfied, where Kx is the integral operator (Kxφ)(t) =
∫ 1

0
Kx(t, s)φ(s)ds,

φ = φ(t) ∈ L2([0, 1]), while the kernel Kx(t, s) is defined by the equality

Rx(t, s) =

∫ 1

0

Kx(t, τ)Kx(s, τ)dτ.

It can be easily seen that in our case Kx(t, s) = G(t, s) and Condition (10) leads to∫ 1

0

G(t, s)r(s)ds =

∫ 1

0

G(t, s)df(s)

the existence of a solution of the integral equation with respect to the function r(t).
This solution exists if f(t) is an absolutely continuous function. Hence the following
statement is true.

Theorem 2. If the measures µy and µx represent, respectively, distributions of
the solutions of Problems (7) and (8) in the space L2([0, 1]) where a(t) is a continu-
ous function while f(t) is an absolutely continuous function, then these measures are
equivalent and the Radon-Nikodym density has the following form:

dµy

dµx

(u) = exp

{
−
∫ 1

0

∫ 1

0

G(t, s)u(t)df(s)dw(t)− 1

2

∫ 1

0

[∫ 1

0

G(t, s)df(s)

]2
dt

}
.
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