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HYDRAULIC CALCULATION OF BRANCHED GAS PIPELINE BY
QUASI-STATIONARY NONLINEAR MATHEMATICAL MODEL

Davitashvili T., Gubelidze G., Sharikadze M.

Abstract. In the present paper gas pressure and flow rate distribution along the main

branched pipeline is investigated. The study is based on the solution of the simplified non-

linear, nonstationary partial differential equations describing gas quasi-stationary flow in the

branched pipeline. The effective solutions of the quasi-stationary nonlinear partial differential

equations are presented.
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With the purpose of studying gas pressure and flow rate distribution in a pipeline
we have been based on the following quasi-stationary, non-isothermal mathematical
model describing gas flow in the branched main pipeline [1-4]

∂P 2

∂x
= AQ2, (1)

∂P

∂t
= B

∂Q

∂x
+ qδ(x− x∗), (2)

where Q(x, t) is volumetric gas flow rate, P (x, t) is gas pressure, δ is Dirac function
and x∗ is placement of an offshoot in the pipeline, q is volumetric gas consumption in
a branch-line q = BV, V is gas volumetric discharge consumption in branch-line in the
offshoot, A and B are known values characterizing gas and pipe specifications [1-4]:

A =
16λP 2

0 T

π2gRT0D5
, B = − 4P0T

πT0D2
, q = B · V,

where T is temperature (absolute) of gas, R is gas constant, Z is gas-compressibility
factor, L, D, λ are length, diameter and hydraulic resistance factor of pipeline, is
acceleration of gravitation, P0 and T0 are pressure and temperature of gas at standard
conditions, V is gas volumetric consumption in the offshoot.

The system of equations (1), (2) with the additional constraints 0 ≤ x < L, t ≥ 0
is solved by the following initial and boundary conditions

P (x, 0) = P0(x), (3)

P (0, t) = P1(t), Q(L, t) = Q2(t). (4)

Approximate analytical solution of the system of equations (1)-(2) for the simple
pipelines (when q=0) is known. In the present paper we additionally consider a branch
line and in our opinion this will be a new step for approximate analytical solution of
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the system of equations (1)-(2) with initial and boundary conditions (3)-(4). For this
we use the following averaging [1, 3]

∂P

∂t
≈ 1

L

L∫
0

∂P

∂t
dx = φ(t), (5)

and well-known Dirac’s function approximation [5]

δ(x− x∗) =
α

π [1 + α2(x− x∗)2]
, (6)

where α → ∞.
Taking into consideration (6)

q

L∫
x

δ(ξ − x∗)dξ ≈ q

π
[arctanα(L− x∗)− arctanα(x− x∗)] ,

where α → ∞ and (5), then integration of equation (2) in the interval [x, L] gives

φ(t) · (L− x) = B (Q(L, t)−Q(x, t)) +
q

π
[arctanα(L− x∗)− arctanα(x− x∗)] ,

From the last equation we get

Q(x, t) = Q2(t)−
1

B
φ(t) · (L− x) +

q

πB
[arctanα(L− x∗)− arctanα(x− x∗)] , (7)

Solution (7) will be very useful for performing works of practical type in case of defining
function φ(t). Formula (7) after expansion in a Taylor series in the area of the point
x = L and keeping the first power terms gives:

Q(x, t)) = Q2(t)−
1

B
φ(t) · (L− x)− αq(x− L)

πB [1 + α2(L− x∗)2]
. (8)

Integration of equation (1) in the interval [0, x] gives

P 2(x, t)− P 2
1 (t) = A

x∫
0

Q2(x, t)dx.

If we take into account (8) in the last equality, after integration we get:

P 2(x, t) = P 2
1 (t) + AQ2

2(x0, t) · x+
A

3B2
φ2(t) ·

[
(x− L)3 + L3

]
+

Aα2q2

3π2B2 [1 + α2(L− x∗)2]2
[
(x− L)3 + L3

]
+
A

B
·Q2(t) · φ(t)

[
(x− L)2 − L2

]
− Aα · q ·Q2(t)

πB [1 + α2(L− x∗)2]

[
(x− L)2 − L2

]
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−2Aα · q · φ(t) · [(x− L)3 + L3]

3πB2 [1 + α2(L− x∗)2]
. (9)

Analysis of the terms orders in the right side of (9) shows that it is possible to
neglect third and forth terms with respect to the rest components after expansion into
a series the binomial and keeping first power terms. Taking into account that φ2(t) ≈ 0,
then

P (x, t) = P1(t) +
A

2P1(t)

{
Q2

2(t)x+
1

B
Q2(t)φ(t) ·

[
(x− L)2 − L2

]
+

α2 · q2 [(x− L)3 + L3]

3π2B2 [1 + α2(L− x∗)2]2
− α · q ·Q2(t) [(x− L)2 − L2]

πB [1 + α2(L− x∗)2]

−2α · q · φ(t) [(x− L)3 − L3]

3πB2 [1 + α2(L− x∗)2]

}
. (10)

Generally, at the standard working conditions gas feeding (supply) at the pipeline
entrance point has stationary character that is why we assume that P1(t) = P1 = const.

With the purpose of defining function φ(t) first differentiating function P (x, t) with
respect to t then integrating of the obtained expression in the interval [x, L] and in mind
(5) gives:

L∫
0

∂P (x, t)

∂t
dx =

A

2P1

L∫
0

{
2Q2(t) ·Q′

2(t)x+
1

B
(x2 − 2Lx) · [Q′

2(t)φ(t) + φ′(t)Q2(t)]

−α · q ·Q′
2(t) · [x2 − 2Lx]

πB [1 + α2(L− x∗)2]
− 2α · q · φ′(t) (x3 − 3x2L+ 3xL2)

3πB2 [1 + α2(L− x2)2]

}
= φ(t) · L. (11)

φ(t) =
A

2P1

Q2(t) ·Q′
2(t)L− AL2Q′

2(t)

3P1B
φ(t)− AL2Q2(t)

3P1B
φ′(t)

− αAqQ′
2(t)L

2

3P1πB [1 + α2(L− x∗)2]
− AαqL3φ′(t)

4P1πB2 [1 + α2(L− x∗)2]

In our notations:

a =
AL2Q2(t)

3P1B
+

AαqL3

4P1πB2 [1 + α2(L− x∗)2]
, b = 1 +

AL2Q′
2(t)

3P1B
,

d =
AQ2(t)Q

′
2(t)L

2P1

− αAqQ′
2(t)L

2

3P1πB [1 + α2(1− x∗)2]
, E(t) =

B

a
, N(t) =

d

a

from expression (11) it follows that

φ′(t) + E(t) · φ(t) = N(t). (12)

Form equation (12) we then obtain:

φ(t) = e−
∫
E(t)dt

[∫
N(t) · e

∫
E(t)dtdt+ C

]
. (13)
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In (13) constant C can be obtained by the following equation φ(0) = φ0, where φ(0) can
be defined from equation (7) by inserting t = 0 and x = L by taking into consideration
the following equality: P (L, 0) = f(L).

It is notable to emphasize that formula (10) can be used for the definition of place-
ment gas escape on the branched main pipeline. Namely for that we have to assume
that x∗ is unknown coordinate of the gas escape in equation (10) while we assume gas
flow rate at the offshoot as the known function using one additional condition

P (L, t) = P ;

Some results of pressure distribution in the main pipeline with different location of
offshoots are presented in Fig.1 and Fig.2.

Fig.1 Pressure distribution in the branched Fig.2 Pressure distribution in the branched
pipe when the offshore located at the distance pipe when the offshore located at the distance

L/4 from the pipe’s end point L/8 from the pipe’s end point
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