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SIMULATION OF BURRIDGE-KNOPOFF MODEL

Chargazia Kh., Kharshiladze O.

Abstract. Simulation of Burridge-Knopoff spring-block model is carried out. Discrete equa-

tions are used for this purpose. The discrete system exhibits both periodic and chaotic

motion, the system’s transition to chaos is size-dependent (dependent on blocks’ number).

The Dietrich -Ruina friction law attached to the model is nonlinear and scale-dependent,

which represents an implication of the numerical simulation. The critical parameter value

needed for the onset of chaos in a single block case is defined.
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Dynamic model, studied extensively since its introduction in the 1960s, is the Bur-
ridge and Knopoff [1967, 1] (BK) model of many blocks interconnected by elastic springs
with constant spring stiffness coefficient. The blocks are also elastically coupled (with
spring stiffness coefficient to a rigid plate moving at a constant velocity V0 and pulled
over a rough surface described by some friction law. The interface between the blocks
and the rough surface can be considered an analogue for a 1-dimensional earthquake
fault [Carlson et al., 1991]. Burridge and Knopoff [1967, 1] conducted several labo-
ratory experiments of this system - the first case considered equal spring constants
between blocks, and the second with graduated values for the spring constants. They
observed several types of behavior in this configuration including the presence of large
shocks in the system when the spring constants were stretched far enough to set the
blocks on the verge of instability. And while they found a Gutenberg-Richter distribu-
tion of event sizes present in their model, they note that statistical properties along the
fault surface are determined by the nature of the friction law describing the interface
(a property confirmed, at least partially, by Elbanna and Heaton [2009, 3]). At this
time rate and state friction laws had not yet emerged as powerful tools in dynamic sim-
ulations however. Burridge and Knopoff formulated the equations of motion for this
system incorporating a friction law that was dependent only on the block’s velocity.

The equations of motion are derived from a one-dimensional chain of spring-connected
blocks elastically coupled and driven by a plate moving at a constant rate V0 according
to the model by using the version proposed by Madariaga [1998, 2, 6] of a single spring-
block oscillator. The blocks slide along a rough surface according to the nonlinear D-R
friction law and the equations of motion for the j-th block’s position uj are given by

muj = µ(uj+1 − 2uj + uj−1)− λuj − Fj(uj, θj), (1)

Fj(uj, θj) = θj + A ln(uj/V0), θj = −((uj + V0)/Dc)(θj +B ln(uj/V0 + 1)),

where Fj is the rate uj and state θj Dietrich - Ruina friction law from equation, µ is
the spring constant coupling the blocks, λ is the spring constant coupling each block
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to the driver plate, and V0, A,B and Dc are the constant frictional parameters, uj is
the position of the j-th block, or its slip from its initial starting position.

Because of the nonlinearity imposed into equation (1) by the logarithmic term in
the D-R friction law, analytic integration cannot be done even in the simplest case of a
single block. For this reason we proceed by implementing a numerical method by first
writing (1) as a system of three first order ODEs

uj = vj, vj = γ2(uj+1 − 2uj + uj−1)− γ̃2uj − (γ2/ξ)(θj + ln(uj/V0 + 1)), (2)

θj = −(vj + 1)(θj + (1 + e)ln(uj/V0 + 1)),

where γ =
√

µ/m(Dc/V0),γ̃
√
λ/m(Dc/V0), are non-dimensional frequencies, ξ(µDc)/A

is a non-dimensional spring constant, e = (B − A)/A.
Dieterich-Ruina friction has introduced numerical challenges because the nonlin-

earity of the logarithmic term causes the system’s local Jacobian matrix to have very
negative eigenvalues - a property that usually indicates the presence of numerical stiff-
ness (well documented in [Erickson et al., 2008, 4] and [Noda et al., 2008, 7]). During
the simulations it was found that even with the use of an implicit numerical method
suited for numerically stiff problems, the time step was still restricted by accuracy
requirements. Even with a stable method, if the time step taken is too large, then the
algorithm returns numerical value of vj < −1 and the logarithmic term is undefined.
For this reason, we use a classical fourth order explicit Runge-Kutta method on the
ODEs in equation (2) whose step size adapts according to requirements for accurate
resolution when vj is close to -1. N blocks are evenly spaced on a chain of length 20
dimensionless spatial units. Since fault rupture is caused by small stress instabilities
along the fault surface and often propagate like a localized pulse [Heaton, 1990, 3,5],
we choose to represent the initial data as localized departure from the equilibrium (or
stationary) regime. Therefore initial data is a smooth Gaussian pulse centered at the
middle block

u0(j) = 1.5e(xi−10)2/σ2

, v0(j) = 0, θ0(j) = 0, j = 1, 2, . . . , N, (3)

where σ = 1.
This corresponds to imposing an initial stress peturbation into the initial position

of each block from its adjacent point on the driver plate, the middle block having the
greatest initial displacement. All have zero initial velocity (with respect to the driver
plate). Free boundary conditions imply that blocks on either end of the chain are only
influenced by the single block connecting them to the chain, and their elastic coupling
with the driver plate. Because of a lack of insight into proper parameter values, we
explore the parameter space that allows for more manageable numerical computation
(i.e. where the parameters associated with the nonlinear terms are not too large).
Numerical integration is done for different amounts of blocks: N = 1, 10, 20, 21 blocks.
Parameter values used here are fixed at e = 0.5; ξ = 0.5; γ = 0.5; γ̃ = 0.5.. Figures 1 -
3 correspond to three blocks. Figure 1 is the initial displacement of all N blocks and
figure 2 is the slip of all N blocks against time. Figure 3 is the contour of the middle
block’s slip against time and one can further view the periodic, or aperiodic behavior
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occurring. Periodic orbits will appear as a single closed loop in the phase space, while
aperiodic orbits will appear as a strange attractor.

After a transient period in which the initial perturbation is amplified, the nonlin-
earities saturate this growth and the system settles into the same periodic trajectory
- suggesting that the blocks move collectively. All 3 blocks undergo abrupt, periodic
motion of period approximately 20 temporal units and amplitude approximately 4 slip
units. They are stuck to the rough surface until the driver plate overcomes the static
friction holding each block in place, and the chain suddenly begins to slide. After a
time period, the blocks approach a gradual stop until the pulling force overcomes static
friction, and the cycle begins again. Sudden motion, reminiscent of stick-slip behavior
emerges as the blocks respond to the driver plate. Under the same parameter combi-
nation, periodic motion occurs when considering the system of 10 blocks as viewed in
although it appears that the period of the solution has undergone at least one period
doubling bifurcation. In this case all 10 blocks undergo periodic motion, but their
slip values reach different amplitudes - the block in the center of the chain reaches an
amplitude of approximately 3 slip units during each cycle, while nearby blocks reach
smaller amplitudes. Similar is the case for N= 20 blocks, although the periodicity of
the motion appears to double again. For this fixed set of parameter values, the motion
is periodic in time for N = 3,...,20, but when N = 21, the motion becomes aperiodic in
time. Each block follows its own chaotic trajectory in time and the blocks appear to
move independently of each other suggesting chaotic behavior in space as well. Further
studies show that this transition to chaotic motion varies, depending on the parameters
considered. More specifically, the fact that a transition occurs between N = 20 and
N = 21 is not universal; it depends on the parameters used. It is also important to
note that regardless of the type of motion these systems produce, one can observe that
there is a transient period during which small instabilities introduced by the initial
slip displacement is amplified as energy enters the system. This amplification is then
saturated by the nonlinearities present from the friction law. This feature suggests
that under these parameter values, the friction law can be a mechanism responsible for
causing even small instabilities to grow into large, but finite events.

Conclusion. We have made the simulations of the discrete formulations of a one-
dimensional Burridge and Knopoff [1967, 1] spring-block model subject to the nonlinear
Dieterich-Ruina friction law. In the discrete case we observe a transition to chaos when
varying the system size, i.e. the number of blocks N. For N = 3, 10, and 20 blocks,
periodic behavior emerges. When N is increased from 20 to 21 however, this periodic
behavior is lost and chaos ensues, as further asserted by the broadband noise in the
power spectrum. This transition occurs for a fixed set of parameter values and we see
that the small value of e = 0, 5 will generate chaotic motion, as long as the system
size N is sufficiently large. This value is much smaller than that required for chaotic
motion that we found in the single block case, where e ≈ 11. This suggests that,
dynamic rupture modeling with this friction law can produce chaotic dynamics when
considering a wide range of parameter values with an increase in system size. It is
possible that the parameter values selected by the authors, or their regularization of
the D-R friction law prohibited the emergence of chaotic dynamics. Also, these results
suggest that chaotic regimes in the BK model under D-R friction is a function of the
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number of blocks considered, similar to the conclusions of Schmittbuhl et al. [1993, 8].
It should be emphasized that this information reveals that the D-R friction law may
very well be scale-dependent, as we have seen different dynamics emerge in systems
with different numbers of blocks. That the transition to chaos appears highly sensitive
to the number of blocks N as well as the value of the parameter suggests that one
should take into consideration their system size when choosing the parameters for a
dynamic rupture model, or find another means of scaling the friction law appropriately.
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