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Abstract. The Fernique-Skorokhod type integral is computed from the exponential of the

sum of linear and quadratic functionals.
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Let H be a separable, real Hilbert space with the scalar product (·, ·) and the
norm ∥ · ∥; ξ is the Gaussian random variable with values in H. Furthermore, ξ has a
kernel (linear, kernel type and positively defined operator) correlation operator B and
Eξ = 0. Suppose, that a ∈ H. Let R be a kernel type operator too. The mathematical
expectations

E exp{(a, ξ)H + (Rξ, ξ)H} (1)

are the Fernique-Skorokhod type integrals (see [1,2]). Our aim is to prove the formula:
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Earlier version of this formula was discussed in [3,4].

Let {ek} be the orthonormal system of eigenvectors of the operator B
1
2RB

1
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{λk} are eigenvalues related to vectors {ek}. The scalar product (x, y) =
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x ∈ H, y ∈ H in H is introduced, and closure of H on norm ∥x∥− =
√
(x, x) is

considered. Denote the obtained space by H−. Further, H+ is the subspace of space H
and range of definition of the operator B− 1

2 . H+ is the Hilbert space in scalar product
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− = H+ and the obtained three H+ ⊂ H ⊂ H− is

named as an equipped Hilbert space.
Suppose ξ = B

1
2 ζ, where ζ is the so called ”white noise”. It is a random element

in space H− with zero mean and identity correlation operator in H. It is possible to
give usual sense as extension on a continuity of a functional to the equality
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Really, the scalar product (x, ζ)H is well defined at x ∈ H+ and ζ ∈ H−. Thus, the
possibility of extension of functional (x, ζ)H follows from equality E(x, ζ)2H = ∥x∥2H in
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case when x ∈ H− (so called measurable random functional). Moreover,
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and ζk = (ek, ζ)H . Here ζk are independent Gaus-

sian random variables with the parameters equal to 0 and 1. Analogously, we can give
sense to the second term. Let Pn be the projection operator on subspace generated by
the vectors e1, e2, ..., en. Then
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In view of these reasons we can write
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where qk = 1− 2λk, dk = ak
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. Denote y =
√
qk(x− dk), dx = 1√

qk
dy, then it is easy

to calculate the obtained integral:
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It isn’t difficult to see that
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Therefore,
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