Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 29, 2015

THE BOUNDERY VALUE PROBLEM POSED IN AN INFINITE DOMAIN FOR ONE EQUATION OF TRANSFER THEORY

Bibiluri M.

Abstract. The aim of this paper is to study the boundary value problem for one nonhomogeneous linear transport equation in a infinite medium with simple kernel. To this end the method of expansions by the eigenfunctions of the corresponding characteristic equation is used.

Keywords and phrases: Transport equation, boundary value problem.

AMS subject classification (2000): 45B05, 45E05.

Consider the following non-homogeneous linear transport equation which occurs when investigating many important problems of mathematical physics

$$\mu \frac{\partial \Psi}{\partial x} + \Psi(x,\mu,E) = \frac{c}{2} \int_{E_0}^{E_1} \int_{-1}^{+1} \alpha(E) \alpha(E') \Psi(x,\mu',E') d\mu' dE' + f(x,\mu,E), \quad (1)$$
$$x \in (-\infty, +\infty), \quad \mu \in [-1, +1], \quad E \in [E_0, E_1]$$

with additional conditions:

 i_1

$$\Psi^+(x_0,\mu,E) - \Psi^-(x_0,\mu,E) = \psi(\mu,E);$$

 i_2

$$\lim_{x \to \infty} \Psi(x, \mu, E) = 0$$

$$x_0 \in (-\infty, +\infty), \quad \mu \in [-1, +1], \quad E \in [E_0, E_1],$$

where $\alpha(E)$ is a continuous function and suppose that

$$\int_{E_0}^{E_1} \alpha^2(E) dE = 1,$$

0 < c < 1, the function $f(x, \mu, E)$ is also continuous, vanishes as $|x| \to \infty$, is differentiable with respect to x, satisfying H^* conditions [1] with respect to μ , the function $\psi(\mu, E)$ is continuous satisfying H^* conditions with respect to μ . We wish to find vanishing as $|x| \to \infty$, continuous solution of Eq.(1) satisfying H^* conditions with respect to μ and the additional conditions (i_1) and (i_2) .

Similar problem was investigated by K. Case [2].

It is known that [3] the general solution of the homogeneous equation

$$\mu \frac{\partial \Psi_0}{\partial x} + \Psi_0(x,\mu,E) = \frac{c}{2} \int_{E_0}^{E_1} \int_{-1}^{+1} \alpha(E) \alpha(E') \Psi_0(x,\mu',E') d\mu' dE',$$
(2)

$$x \in (-\infty, +\infty), \quad \mu \in [-1, +1], \quad E \in [E_0, E_1]$$

can be represented in the form

$$\Psi_0(x,\mu,E) = d_-\varphi_-(\mu,E)e^{-(x-x_0)/\nu_0} + d_+\varphi_+(\mu,E)e^{(x-x_0)/\nu_0} + \int_{E_0}^{E_1} \int_{-1}^{+1} u(\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,E)e^{-(x-x_0)/\nu},$$

where $d_{\pm} = const$,

$$\varphi_{\pm}(\mu, E) = \frac{c}{2} \frac{\nu_0 \alpha(E)}{\nu_0 \mp \mu}$$

are the regular eigenfunctions with the two roots $\pm \nu_0$ eigenvalues which occur from the following equation

$$1 - \frac{c\nu}{2} \ln \frac{1 + 1/\nu}{1 - 1/\nu} = 0$$

 ν_0 is real and does not lie between -1 and +1. The singular eigenfunctions have the form

$$\varphi_{\nu,(\zeta)}(\mu, E) = \frac{c\nu}{2} \frac{\alpha(E)\alpha(\zeta)}{\nu - \mu} + (\delta(\zeta - E) - \frac{c\nu}{2} \int_{-1}^{+1} \frac{\alpha(E)\alpha(\zeta)}{\nu - \mu'} d\mu')\delta(\nu - \mu).$$
(3)

It is also known that the system of eigenfunctions of the characteristic equation

$$(\nu - \mu)\varphi_{\nu}(\mu, E) = \frac{c\nu}{2} \int_{E_0}^{E_1} \int_{-1}^{+1} \alpha(E)\alpha(E')\varphi_{\nu}(\mu', E')d\mu'dE'$$

corresponding to the homogeneous equation (2) is complete for functions $\psi(\mu, E)$ which is continuous and satisfying H^* condition with respect to μ . It is to be shown that one can express $\psi(\mu, E)$ in the form

$$\psi(\mu, E) = a_{-}\varphi_{-}(\mu, E) + a_{+}\varphi_{+}(\mu, E) + \int_{E_{0}}^{E_{1}} \int_{-1}^{+1} u(\nu, \zeta)\varphi_{\nu,(\zeta)}(\mu, E)d\nu d\zeta.$$
(4)

The coefficients a_{\pm} are readily found

$$a_{\pm} = \frac{1}{N_{\pm}} \int_{E_0}^{E_1} \int_{-1}^{+1} \mu \varphi_{\pm}(\mu, E) \psi(\mu, E) d\mu dE,$$
(5)

where

$$N_{\pm} = \int_{E_0}^{E_1} \int_{-1}^{+1} \mu \varphi_{\pm}^2(\mu, E) d\mu dE$$

the function $u(\nu, \zeta)$ may be defined by formula

$$u(\nu,\zeta) = \int_{E_0}^{E_1} \int_{-1}^{+1} \mu \tilde{\varphi}_{\nu,(\zeta)}(\mu, E) \psi(\mu, E) d\mu dE,$$
(6)

here

$$\tilde{\varphi}_{\nu,(\zeta)}(\mu, E) = \varphi_{\nu,(\zeta)}(\mu, E) + \frac{\rho(\nu)}{1 - \rho(\nu)} \int_{E_0}^{E_1} \alpha(\zeta) \alpha(\zeta') \varphi_{\nu,(\zeta')}(\mu, E) d\zeta'$$

and

$$\rho(\nu) = 1 - \lambda^2(\nu) - \frac{\pi^2 c^2 \nu^2}{4}, \quad \lambda(\nu) = 1 - \frac{c\nu}{2} \int_{-1}^{+1} \frac{d\mu}{\nu - \mu}$$

In view of Eq. (4) for the function $f(x, \mu, E)$ we can write

$$f(x,\mu,E) = b_{-}(x)\varphi_{-}(\mu,E) + b_{+}(x)\varphi_{+}(\mu,E) + \int_{E_{0}}^{E_{1}} \int_{-1}^{+1} b(x,\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,E)d\nu d\zeta,$$

where the coefficients $b_{\pm}(x)$ and $b(x, \nu, \zeta)$ are defined similar as a_{\pm} and $u(\nu, \zeta)$.

By immediate substitution it is established that the function

$$\Psi(x,\mu,E) = \Psi_0(x,\mu,E) + \int_{x_0}^x b_-(s)\varphi_-(\mu,E)e^{-(x-x_0)/\nu_0}ds$$
$$+ \int_{x_0}^x b_+(s)\varphi_+(\mu,E)e^{(x-x_0)/\nu_0}ds$$
$$+ \int_{x_0}^x \int_{E_0}^{E_1} \int_{-1}^{+1} b(s,\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,E)e^{-(x-x_0)/\nu_0}d\nu d\zeta ds$$

satisfies the equation (1).

It is seen that under the condition $x > x_0$ the function

$$\begin{split} \Psi(x,\mu,E) &= a_{+}\varphi_{+}(\mu,E)e^{-(x-x_{0})/\nu_{0}} \\ + \int_{E_{0}}^{E_{1}} \int_{0}^{+1} u(\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,E)e^{-(x-x_{0})/\nu}d\nu d\zeta + \int_{x_{0}}^{x} b_{-}(s)\varphi_{-}(\mu,E)e^{-(x-x_{0})/\nu_{0}}ds \\ &+ \int_{x_{0}}^{x} b_{+}(s)\varphi_{+}(\mu,E)e^{(x-x_{0})/\nu_{0}}ds \\ &+ \int_{x_{0}}^{x} \int_{E_{0}}^{E_{1}} \int_{-1}^{+1} b(s,\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,E)e^{-(x-x_{0})/\nu_{0}}d\nu d\zeta ds \end{split}$$

is solution of Eq.(1) vanishes as $x \to \infty$. In just the same way under the condition $x < x_0$ the function

$$\Psi(x,\mu,E) = -a_{-}\varphi_{+}(\mu,E)e^{-(x-x_{0})/\nu_{0}} - \int_{E_{0}}^{E_{1}}\int_{-1}^{0}u(\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,E)e^{-(x-x_{0})/\nu}d\nu d\zeta$$
$$+ \int_{x_{0}}^{x}b_{-}(s)\varphi_{-}(\mu,E)e^{-(x-x_{0})/\nu_{0}}ds + \int_{x_{0}}^{x}b_{+}(s)\varphi_{+}(\mu,E)e^{(x-x_{0})/\nu_{0}}ds$$

is solution of Eq.(1) vanishes as $x \to -\infty$.

Now it remains to satisfy the condition (i_1) . But if the coefficients a_{\pm} and $u(\nu, \zeta)$ are defined from formulas (5) and (6) then the condition (i_1) will be fulfilled.

$\mathbf{R} \to \mathbf{F} \to \mathbf{R} \to \mathbf{N} \to \mathbf{S}$

1. Muskhelishvili N. Singular Integral Equations P. Noordooff: Groningrn, 1953.

2. Case K.M., Zweifel P.F. Linear Transport Theory, University of Michigan, Addison-Wesley Pub.Co, 1967.

3. Shulaia D.A. Linear Equation of the Multivelocity Transport Theory (Russian). J. Vich. Math.i Math. Phys. 23,5: 1125-1140, 1983.

Received 16.05.2015; revised 25.09.2015; accepted 16.11.2015.

Author's address:

M. Bibiluri Georgian Technical University 77, M. Kostava St., Tbilisi 0175 Georgia E-mail: bibiluri@gtu.ge