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Abstract. One-dimensional parabolic system of nonlinear partial differential equations is

considered. The model is based on Maxwell’s system which arises at describing penetration

of a magnetic field into a substance. Semi-discrete scheme is constructed for the first type

initial-boundary value problem. Graphs of numerical experiments are given.
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One-dimensional model, which describes the process of diffusion of electromagnetic
field with taking into account heat conductivity is studied. In particular, the following
system is considered:
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where α is a constant.
System of equations (1), (2) are interesting as for mathematics, also for physics

and other scientific fields. As it is already mentioned, it represents one-dimensional
analogue of system of equations, by which the electromagnetic field diffusion process
with taking into account heat conductivity is described [1].

One must note that to investigation and approximate solution of (1), (2) and its
multi-dimensional analogues many scientific works are dedicated (see, for example,
[2]-[12] and references therein).

In the domain Q = Ω × (0, T ), where Ω = (0, 1), let us consider the following
initial-boundary value problem for system (1), (2):

U (x, t) = V (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) , (3)

U (x, 0) = U0 (x) , V (x, 0) = V0 (x) ≥ Const > 0, (4)

where U0, V0 are known functions defined on Ω̄ = [0, 1], T is the fixed positive constant,
∂Ω is the boundary of Ω.

After introducing new notations V 1/2 = W and 2α = γ, problem (1) - (4) can be
rewritten in the following equivalent form [2]:
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U (x, t) = W (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) , (7)

U (x, 0) = U0 (x) , W (x, 0) = W0(x) = V
1/2
0 (x) ≥ Const > 0. (8)

Let us use well-known notations of time grid and forward derivative and consider
the following semi-discrete scheme [2] constructed for problem (5) - (8):
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u0 = U0, w0 = W0,

(9)

with homogeneous boundary conditions (7).

The following statement takes place.

Theorem. If −1 ≤ γ ≤ 1 and problem (5) - (8) has a sufficiently smooth solution
U , W , then for the solution of the semi-discrete scheme (9) the following estimate holds

∥∥U j − u (tj)
∥∥+

∥∥W j − w (tj)
∥∥ = O (τ) .

Here ∥ · ∥ is a discrete analog of the norm of the space L2 (Ω).

Let us note that semi-discrete and finite difference schemes for (1) - (4) and (5) -
(8) type problems are constructed in many works (see, for example, [2]-[4], [6]-[12] and
references therein). Convergence of the first order finite-difference scheme for (1) - (4)
problem is fixed in [11]. Using this type scheme some numerical experiments are made
for establishing parabolic regularization fact for (1) - (4) problem in [9].

In the present note applying natural discretization for space derivatives the finite
difference scheme, based on the semi-discrete scheme (9), is also constructed. Using
this scheme several numerical experiments are carried out. Some results of them are
given in figures below (Fig.1 and Fig.2).

The graphs in Fig.1 illustrate the exact and numerical solutions and the differences
between them for problem (5) - (8) with suitable right parts and for γ = 1. The exact
solution is taken as:

U (x, t) = x (1− x) (1 + t) , W (x, t) = x (1− x)
(
1 + t+ t2

)
.
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Fig.1. Exact and numerical solutions and the
differences between them for the function U .

Fig.2. Exact and numerical solutions and the
differences between them for the function W .
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