Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 29, 2015

VARIETIES OF EXPONENTIAL MR-GROUPS

Amaglobeli M.

Abstract. In the present paper some problems of the theory of the varieties of exponential groups are considered.

Keywords and phrases: Exponential R-group, Lyndon R-group, MR-group, varieties MR-group, α -commutator.

AMS subject classification: 20B07.

Let R be an associative ring with identity. Myasnikov and Remeslennikov [1] introduced the new category of exponential R-groups as a natural generalization of the notion of an R-module to the noncommutative case. Below, we recall basic definitions borrowed from [1, 2].

Let $L = \langle \cdot, -1, e \rangle$ be the group language (signature); here, \cdot denotes the binary operation of multiplication, $^{-1}$ denotes the unary operation of inversion, and e is a constant symbol for the identity element of the group.

We enrich the group language to the language $\mathfrak{L}_{gr}^* = \mathfrak{L}_{gr} \cup \{f_\alpha(g) \mid \alpha \in \mathsf{R}\}$, where $f_\alpha(g)$ is a unary algebraic operation.

Definition 1. A Lyndon R-group is a set G with operations, \cdot , $^{-1}$, e and $\{f_{\alpha}(g) \mid \alpha \in \mathsf{R}\}$ are defined and the following axioms hold:

- (i) the group axioms;
- (ii) for all $g, h \in G$ and all elements $\alpha, \beta \in \mathsf{R}$,

$$g^1 = g, \ g^0 = e, \ e^{\alpha} = e;$$
 (1)

$$g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, \quad g^{\alpha\beta} = (g^{\alpha})^{\beta}; \tag{2}$$

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h.$$
 (3)

For brevity, in the formulas expressing the axioms, we write $f_{\alpha}(g)$ instead of g^{α} for $g \in G$ and $\alpha \in \mathbb{R}$.

Let $\mathfrak{L}_{\mathsf{R}}$ denote the category of all Lyndon R-groups. Since the axioms given above are universal axioms of the language \mathfrak{L}_{gr}^* , it follows that $\mathfrak{L}_{\mathsf{R}}$ is a variety of algebraic systems in the language \mathfrak{L}_{gr}^* ; therefore, general theorems of universal algebra allow us to consider the varieties of R-groups, R-homomorphisms, R-isomorphisms, free R-groups, and so on.

MR-exponential groups. There exit Abelian Lyndon R-groups which are not R-modules (see [3], where the structure of a free Abelian R-group was studied in detail). The authors of [1] augmented Lyndon's axioms (quasi-identity):

(MR)
$$\forall g, h \in G, \ \alpha \in \mathsf{R} \ [g, h] = 1 \Longrightarrow (gh)^{\alpha} = g^{\alpha} h^{\alpha}.$$
 (4)

Definition 2. An MR-group is a group G on which the operations g^{α} are defined for all $g \in G$ and $\alpha \in \mathbb{R}$ so that axioms (1)–(4) hold.

Let $\mathfrak{M}_{\mathsf{R}}$ denote the class of all R-exponential groups with axioms (1)–(4). Clearly, this class is a quasi-varieties in the language \mathfrak{L}_{gr}^* , and free MR-groups, MR-homomorphisms, and so on are defined; moreover, each Abelian MR-group is an R-module and vice versa.

Most of natural examples of exponential group belong to the class $\mathfrak{M}_{\mathsf{R}}$:

- 1) An arbitrary group is a \mathbb{Z} -group.
- 2) An Abelian divisible group from $\mathfrak{L}_{\mathbb{Q}}$ is an $\mathfrak{M}_{\mathbb{Q}}$ -group.
- 3) A group of period m is a $\mathbb{Z}/m\mathbb{Z}$ -group.
- 4) A module over the ring R is an Abelian MR-group.
- 5) Free Lyndon R-groups are MR-groups.
- 6) The exponential nilpotent R-groups over the binomial ring R introduced by P. Hall in [4] are MR-groups.

A systematic study of MR-group was initiated in [5–12]. Results obtained in these papers have turned out to be very useful in solving well-known problems of Tarski.

Below, following [1], we recall some definitions in the category of MR-groups. Let G be an MR-group.

Definition 3. A homomorphism of R-groups $\varphi : G_1 \to G_2$ is called an **R-homo-morphism** if $\varphi(g^{\alpha}) = \varphi(g)^{\alpha}, g \in G, \alpha \in \mathbb{R}$.

Definition 4. For $g, h \in G$ and $\alpha \in \mathsf{R}$, the element

$$(g,h)_{\alpha} = h^{-\alpha}g^{-\alpha}(gh)^{\alpha}$$

is called the α -commutator of the elements g and h.

Clearly, $(gh)^{\alpha} = g^{\alpha}h^{\alpha}(g,h)_{\alpha}$ and $G \in \mathfrak{M}_{\mathsf{R}} \iff ([g,h] = 1 \implies (g,h)_{\alpha} = 1)$. This equivalence leads to the definition of an $\mathfrak{M}_{\mathsf{R}}$ -ideal.

Definition 5. A normal R-subgroup $H \underline{\wedge} G$ is called an $\mathfrak{M}_{\mathsf{R}}$ -ideal if, for any $g \in G$, $h \in H$ and $\alpha \in \mathsf{R}$,

$$[g,h] \in H \Longrightarrow (g,h)_{\alpha} \in H.$$

Proposition 1.

(i) If $\varphi : G_1 \to G_2$ is an *R*-homomorphism in the category \mathfrak{M}_R -groups, then ker φ is an \mathfrak{M}_R -ideal in G.

(ii) If H is an \mathfrak{M}_R -ideal in G, then $G/H \in \mathfrak{M}_R$.

Varieties of an exponential MR-group. Let $X = \{x_i \mid i \in I\}$ be an infinite apphabet and $F_{\mathsf{R}}(X)$ let be a free MR-group with free generating set X as an MR-group. Let us call an arbitrary element $w(x_1, \ldots, x_n) \in F_{\mathsf{R}}(X)$ **R-word** in X. Let G be an MRgroup and $g_1, \ldots, g_n \in G$. The map $x_i \mapsto g_i$ can be extended to an R-homomorphism $\varphi: F_{\mathsf{R}}(X) \to G$. The image of the word $w(x_1, \ldots, x_n)^{\varphi} \in G$ under this homomorphism is called value of $w(x_1, \ldots, x_n)$ on the elements g_1, \ldots, g_n . Fix the following notations:

$$w(x_1,\ldots,x_n) = w(\overline{x}), \quad \overline{x} = (x_1,\ldots,x_n), \quad w(g_1,\ldots,g_n) = w(\overline{g}), \quad \overline{g} = (g_1,\ldots,g_n),$$
$$w(G) = \left\{ w(\overline{g}) \mid \overline{g} \in G^n \right\} = \left\{ w(g_1,\ldots,g_n) \mid g_i \in G \right\}.$$

Definition 6. An R-word $w(\overline{x})$ is called an **identity on MR-group** G if w(G) = 1.

Definition 7. Let W be a subset of $F_{\mathsf{R}}(X)$. Then W define the **variety of MR-groups**

$$\mathfrak{N} = \{ G \in \mathfrak{M}_{\mathsf{R}} \mid w(G) = e \ \forall w \in W \}.$$

Definition 8. An R-word $u(\overline{x}) \in F_{\mathsf{R}}(X)$ is called a **corollary** of the set of words W, if u(G) = e for any group $G \in \mathfrak{N}$.

Definition 9. The $\mathfrak{M}_{\mathsf{R}}$ -ideal of G generated by all values of all words from W is called W-verbal ideal of G.

Let us denote by W(G) the W-verbal ideal of G.

Proposition 2. A verbal ideal in $F_R(X)$ generated by the set of word W consists exactly of all corollaries of the set W in $F_R(X)$.

Definition 10. A group $F_{W,\mathbb{R}}(X) \in \mathfrak{N}$ is called a *free group with the base* X *in the varieties* \mathfrak{N} if $F_{W,\mathbb{R}}(X)$ R-generated by the set X and for any group $G \in \mathfrak{N}$ arbitrary map $\varphi_0 : X \to G$ can be extended to an R-homomorphism $\varphi : F_{W,\mathbb{R}}(X) \to G$.

Theorem 1. The group $F_{\mathsf{R}}(X)/W(F_{\mathsf{R}}(X))$ is a free group in the varieties of \mathfrak{N} which is defined by W.

Theorem 2. A class of MR-groups \mathfrak{N} is varieties if \mathfrak{N} is closed with respect to taking subgroups, Cartesian products and R-homomorphisms.

The proof of the last theorem is the same as the Birkhoff's one for varieties of algebraic systems.

Definition 11. The subgroup $(G, G)_{\mathsf{R}} = \langle (g, h)_{\alpha} \mid g, h \in G, \alpha \in \mathsf{R} \rangle_{\mathsf{R}}$ of G is called the MR-commutant of G.

Theorem 3. For any MR-group G the following is true:

- (i) The *R*-commutant of *G* is a *R*-subgroup of *G* by all commutator $[x, y] = x^{-1}y^{-1}xy$.
- (ii) The R-commutant is the smallest \mathfrak{M}_{R} -ideal of G among all ideal H such that G/H is an Abelian MR-group.

Theorem 4. Let R be a field. Then the word $(x, y)_{\alpha} = y^{-\alpha} x^{-\alpha} (xy)^{\alpha}$ generates R-commutant as a verbal subgroup if $\alpha \neq 0, -1$.

Theorem 5. Any *R*-words subset V of $F_R(X)$ is equivalent to a set of *R*-words

$$W = \left\{ x_1^{\alpha_i}, \ u_j \mid i \in I, \ j \in J, \ \alpha_i \in \mathcal{R}, \ u_j \in \left(F_{\mathcal{R}}(X), F_{\mathcal{R}}(X) \right)_{\mathcal{R}} \right\}$$

for suitable sets of indexes I and J.

Remark. When defining the varieties of $\mathfrak{M}_{\mathsf{R}}$ -groups we follow V. A. Gorbunov's monograph [13], which declares how one can understand varieties of groups inside, quasi-varieties of groups. Therein it is shown that for these varieties all the well-known Birkhoff theorems are that for them there exists the notion of a free group and the theory of defining relations.

REFERENCES

1. Myasnikov A.G., Remeslennikov V.N. Degree groups. I. Foundations of the theory and tensor completions (Russian). *Sibirsk. Mat. Zh.*, **35**, 5 (1994), 1106-1118; translation in *Siberian Math. J.*, **35**, 5 (1994), 986-996.

2. Lyndon R.C. Groups with parametric exponents. Trans. Amer. Math. Soc., 96 (1960), 518-533.

3. Baumslag G. Free abelian X-groups. Illinois J. Math., 30, 2 (1986), 235-245.

4. Hall Ph. The Edmonton notes on nilpotent groups. Queen Mary College, London, 1957.

5. Myasnikov A.G., Remeslennikov V.N. Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups. *Internat. J. Algebra Comput.*, **6**, 6 (1996), 687-711.

6. Baumslag G., Myasnikov A., Remeslennikov V. Discriminating completions of hyperbolic groups. *Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata*, **92** (2002), 115-143.

7. Amaglobeli M.G., Bokelavadze T.Z. Power groups. Groups which are accurate at tensor completion. *Vestn. Omsk. Univ.*, **2** (2009), 35-46.

8. Amaglobeli M., Bokelavadze T. Abelian and nilpotent varieties of power groups. *Georgian Math. J.* **18**, 3 (2011), 425-439.

9. Amaglobeli M.G. Power groups. Translated from Sovrem. Mat. Prilozh., **75** (2011), J. Math. Sci. (N. Y.) **186**, 6 (2012), 811-865.

10. Amaglobeli M. Tensor completion in the category of R-groups over a ring R. J. Math. Sci., New York 193, 3 (2013), 353-358; translation from Sovrem. Mat. Prilozh. 80 (2012).

11. Amaglobeli M.G., Remeslennikov V.N. Extension of a centralizer in nilpotent groups. (Russian) Sibirsk. Mat. Zh., 54, 1 (2013), 8-19.

12. Amaglobeli M.G., Remeslennikov V.N. Free nilpotent *R*-groups of class 2 (Russian). *Dokl. Akad. Nauk* 443, 4 (2012), 410-413; translation in *Dokl. Math.*, 85, 2 (2012), 236-239.

13. Gorbunov V.A. Algebraic Theory of Quasivarieties. Siberian School of Algebra and Logic. Consultants Bureau, New York, NY, 1998.

Received 14.05.2015; revised 11.09.2015; accepted 27.10.2015.

Author's address:

M. Amaglobeli Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: mikheil.amaglobeli@tsu.ge