Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 29, 2015

THE CONSISTENT CRITERIA FOR GAUSSIAN HOMOGENEOUS ISOTROPIC STATISTICAL STRUCTURES

Aleksidze L., Zerakidze Z.

Abstract. In this paper we prove the necessary and sufficient conditions for the existence of the consistent criteria for Gaussian structures.

Keywords and phrases: Orthogonal, strongly structures, consistent criteria.

AMS subject classification: 62H05, 62H12.

Here we recall some definitions [1]. Let (E, S) be a measurable space with a given family of probability measures: $\{\mu_i, i \in I\}$.

Definition 1. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called orthogonal (singular) if μ_i and μ_j are orthogonal for each $i \neq j$.

Definition 2. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called strongly separable if there exists a disjoint family of S-measurable sets $\{X_i, i \in I\}$ such that the relations are fulfilled $\mu_i(X_i) = 1$, $\forall i \in I$.

Let $|\mathbf{H}|$ be the set of hypotheses and let $\mathbf{B}(|\mathbf{H}|)$ be σ -algebra of subsets of $|\mathbf{H}|$ which contains all finite subsets of $|\mathbf{H}|$.

Definition 3. A statistical structure $\{E, S, \mu_H, H \in |\mathcal{H}|\}$ is said to admit a consistent criteria of hypotheses if there exists at least one measurable map $\delta : (E, S) \rightarrow (|\mathcal{H}|, \mathcal{B}(|\mathcal{H}|))$, such that $\mu_H(x : \delta(x) = H) = 1, \forall H \in |\mathcal{H}|$.

Let M^{σ} be a linear space of all finite measures with alternating signs on S [2].

Definition 4. A linear subset of measures $M_H \subset M^{\sigma}$ is said to be a Hilbert space of measures if:

1. One can introduce space on M_H a scalar product $\langle \mu, \nu \rangle$, $\mu, \nu \in M_H$ such that M_H is the Hilbert space and for every mutually singular measures μ and ν , $\mu, \nu \in M_H$ is the scalar product $\langle \mu, \nu \rangle = 0$;

2. If
$$\nu \in M_H$$
 and $|f| \leq 1$, then $\nu_f(A) = \int_A f(x) \nu(dx) \in M_H$ and $\langle \nu_f, \nu_f \rangle \leq \langle \nu, \nu \rangle$.

Let $\xi(t_1, t_2, ..., t_n)$, $(t_1, t_2, ..., t_n) \in D$, (let D be a closed bounded Doman in \mathbb{R}^n) be a Gaussian homogeneous random field with the same correlation functions and different mean values $H(t_1, t_2, ..., t_n)$, $(t_1, t_2, ..., t_n) \in D$, let μ_H , $H \in |H|$ be corresponding probability measures given on S and let $f_H(\lambda_1, \lambda_2, ..., \lambda_n)$, $H \in |H|$ be spectral densities of these fields. Let supvrai $f_H(\lambda_1, \lambda_2, ..., \lambda_n) = c < +\infty$, $\forall H \in |H|$.

Theorem 1. The Gaussian homogenous statistical structure $\{E, S, \mu_{H_i}, i \in N\}$, $N = \{1, 2, ..., n, ...\}$ admits a consistent criterion δ of a Hypotheses if and only if this formal

$$\int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} |H_K(t_1, t_2, \dots, t_n)|^2 dt_1 \dots dt_n = +\infty$$
(1)

or

$$\int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \frac{\left|\tilde{H}_K(\lambda_1, \lambda_2, \dots, \lambda_n)\right|^2}{f_{H_K}(\lambda_1, \lambda_2, \dots, \lambda_n)} d\lambda_1 \dots d\lambda_n = +\infty$$
(2)

for all $k \in N$, where $\tilde{H}_k(\lambda_1, ..., \lambda_n) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} ... \int_{-\infty}^{+\infty} e^{i(\lambda_1 t_1 + ... + \lambda_n t_n)} H_k(t_1 ... t_n) dt_1 ... dt_n$.

Necessity. Since a statistical structure $\{E, S, \mu_{H_k}, k \in N\}$ admits a consistent criterion of hypotheses, then exists measurable map $\delta : (E, S) \to (|\mathbf{H}|, \mathbf{B}(|\mathbf{H}|))$, such that $\mu_{H_k}(x : \delta(x) = H_k) = 1$, $\forall k \in N$, then it is obvious, that $\mu_{H_k}(X_k) = 1$, $\forall k \in N$. Therefore, a statistical structure $\{E, S, \mu_{H_k}, k \in N\}$ is orthogonal and as formula (1) or formula (2) is fulfilled.

Sufficiency. A statistical structure $\{E, S, \mu_{H_k}, k \in N\}$ is orthogonal, so $cardN = \chi_0$, the statistical structure is strongly separable then (see theorem 3 [1]) admits a consistent criterion of Hypotheses. Theorem 1 is proved.

Theorem 2. Let $M_H = \bigoplus_{i \in N} M_H(\mu_{H_i})$ be a Hilbert space of measures. The Gaussian Homogeneous isotropic orthogonal statistical structure $\{E, S, \mu_{H_k}, k \in N\}$ admits a consistent criteria of Hypotheses if and only if the correspondence $f \to \psi_f$, given by the equality $\int f(x) \nu(dx) = \langle \psi_f, \nu \rangle$, $\forall \nu \in M_H$ be one-to-one $(f \in F, where f is the set of those f for which <math>\int f(x) \nu(dx)$ is defined $\forall \nu \in M_H$.

Proof. Necessity. Since the statistical structure $\{E, S, \mu_{H_k}, k \in N\}$ admits a consistent criterion of Hypotheses and this family is strongly separable, there exist S-measurable sets $X_i, i \in N$, such that

$$\mu_{H_i}(X_j) = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

Let the function $I_{X_i}(x) \in F$ be correspond with $\mu_{H_i} \in M_H(\mu_{H_i})$. Then $\int I_{X_i}(x) \mu_{H_i}(dx) = \int I_{X_i}(x) \cdot I_{X_i}(x) \mu_{H_i}(dx) = \langle \mu_{H_i}, \mu_{H_i} \rangle$. Let the function $f_{\psi}(x) = f_1(x) I_{X_i}(x)$ be corresponded with $\psi_1 \in M_H(\mu_{H_i})$. Then any $\psi_2 \in M_H(\mu_{H_i}) \int f_{\psi}(x) \psi_2(x) \mu_{H_i}(dx) = \int f_{\psi}(x) \cdot f_2(x) I_{X_i}(x) \mu_{H_i}(dx) = \int f_{\psi}(x) f_2(x) \mu_{H_i}(dx) = \langle \psi_1, \psi_2 \rangle$. Let the function $f(x) = \sum_{i \in N} g_i(x) I_{X_i}(x) \in F$ be corresponded with the measure $\nu \in M_H$, $\nu = \sum_{i \in N} \int g_i(x) \mu_{H_i}(dx)$ then $\nu_1(B) = \sum_{i \in N} \int g_i^1(x) \mu_{H_i}(dx)$, have $\int f(x) \nu_1(dx) = \langle \nu_1, \nu \rangle$. so the necessity is proved.

Sufficiency. Let $f \in F$ be corresponded with $\nu_f \in M_H$ for which $\int f(x)\nu(dx) = \langle \nu_f, \nu \rangle$, then $\psi_1, \psi_2 \in M_H(\mu_{H_i})$ we have $\int f_{\psi_1}(x) \psi_2(dx) = \langle \psi_1, \psi_2 \rangle = \int f_1(x) f_2(x) \mu_{H_i}(dx)$. So $f_{\psi_1} = f_1$ for a. e. M_{H_i} measures and $f_{H_i}(x) > 0$, $\int f_{H_i}^2(x) \mu_{H_i}(dx) < +\infty$, $\mu_{H_i}^* = \int f_{H_i}(x) \mu_{H_i}(dx)$, then $\langle \mu_{H_i}, \mu_{H_j} \rangle = 0 \quad \forall i \neq j$, so the statistical structure $\{E, S, \mu_{H_i}, i \in N\}$ is weakly separable, so $cardN = \chi_0$, so the statistical structure $\{E, S, \mu_{H_i}, i \in N\}$ is strongly separable, then (see Theorem 3 [1]) admits a consistent criterion of Hypotheses. The Theorem 2 is proved.

Acknowledgement. Research partially supported by Shota Rustaveli National Scientific Grant FR/308/5-104/12.

$\mathbf{R} \to \mathbf{F} \to \mathbf{R} \to \mathbf{N} \to \mathbf{S}$

1. Aleksidze L., Mumladze M., Zerakidze Z. The consistent criteria of hypotheses. Modern stochastics: Theory and Applications, 1 (2014), 3-11.

2. Zerakidze Z. Hiblert space of measures. Ukrainian Mathematical Journal, 38, 2 (1986), 148-154.

Received 27.05.2015; revised 11.12.2015; accepted 25.12.2015.

Authors' address:

L. Aleksidze Gori State Teaching University 53, Chavchavadze St., Gori 1400 Georgia E-mail: lelaaleksidze@gmail.com

Z. Zerakidze Gori State Teaching University 53, Chavchavadze St., Gori 1400 Georgia E-mail: zura.zerakidze@mail.ru