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Abstract. In this paper we prove the necessary and sufficient conditions for the existence of

the consistent criteria for Gaussian strucrures.
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Here we recall some definitions [1]. Let (E, S) be a measurable space with a given
family of probability measures: {µi, i ∈ I}.

Definition 1. A statistical structure {E, S, µi, i ∈ I} is called orthogonal (singular)
if µi and µj are orthogonal for each i ̸= j.

Definition 2. A statistical structure {E, S, µi, i ∈ I} is called strongly separable
if there exists a disjoint family of S-measurable sets {Xi, i ∈ I} such that the relations
are fulfilled µi (Xi) = 1, ∀i ∈ I.

Let |H| be the set of hypotheses and let B (|H|) be σ-algebra of subsets of |H| which
contains all finite subsets of |H|.

Definition 3. A statistical structure {E, S, µH , H ∈ |H|} is said to admit a con-
sistent criteria of hypotheses if there exists at least one measurable map δ : (E, S) →
(|H| ,B (|H|)) , such that µH (x : δ (x) = H) = 1, ∀H ∈ |H| .

Let Mσ be a linear space of all finite measures with alternating signs on S [2].
Definition 4. A linear subset of measures MH ⊂Mσ is said to be a Hilbert space

of measures if:

1. One can introduce space onMH a scalar product ⟨µ, ν⟩, µ, ν ∈MH such thatMH

is the Hilbert space and for every mutually singular measures µ and ν, µ, ν ∈MH

is the scalar product ⟨µ, ν⟩ = 0;

2. If ν ∈MH and |f | ≤ 1, then νf (A) =
∫
A
f (x) ν (dx) ∈MH and ⟨νf , νf⟩ ≤ ⟨ν, ν⟩ .

Let ξ (t1, t2, ..., tn) , (t1, t2, ..., tn) ∈ D, (let D be a closed bounded Doman in
Rn) be a Gaussian homogeneous random field with the same correlation functions
and different mean values H (t1, t2, ..., tn) , (t1, t2, ..., tn) ∈ D, let µH , H ∈ |H| be
corresponding probability measures given on S and let fH (λ1, λ2, ..., λn) , H ∈ |H| be
spectral densities of these fields. Let supvrai fH (λ1, λ2, ..., λn) = c < +∞, ∀H ∈ |H| .

Theorem 1. The Gaussian homogenous statistical structure {E, S, µHi
, i ∈ N} , N =

{1, 2, ..., n, ..} admits a consistent criterion δ of a Hypotheses if and only if this formal∫ +∞

−∞
...

∫ +∞

−∞
|HK (t1, t2, ..., tn)|2 dt1...dtn = +∞ (1)
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or ∫ +∞

−∞
...

∫ +∞

−∞

∣∣∣H̃K (λ1, λ2, ..., λn)
∣∣∣2

fHK
(λ1, λ2, ..., λn)

dλ1...dλn = +∞ (2)

for all k ∈ N , where H̃k (λ1, ..., λn) =
1

(2π)n

∫ +∞
−∞ ...

∫ +∞
−∞ ei(λ1t1+...+λntn)Hk (t1...tn) dt1...dtn.

Necessity. Since a statistical structure {E, S, µHk
, k ∈ N} admits a consistent

criterion of hypotheses, then exists measurable map δ : (E, S) → (|H| ,B (|H|)) , such
that µHk

(x : δ (x) = Hk) = 1, ∀k ∈ N, then it is obvious, that µHk
(Xk) = 1, ∀k ∈ N.

Therefore, a statistical structure {E, S, µHk
, k ∈ N} is orthogonal and as formula (1)

or formula (2) is fulfilled.
Sufficiency. A statistical structure {E, S, µHk

, k ∈ N} is orthogonal, so cardN =
χ0, the statistical structure is strongly separable then (see theorem 3 [1]) admits a
consistent criterion of Hypotheses. Theorem 1 is proved.

Theorem 2. Let MH = ⊕
i∈N

MH (µHi
) be a Hilbert space of measures. The Gaus-

sian Homogeneous isotropic orthogonal statistical structure {E, S, µHk
, k ∈ N} admits

a consistent criteria of Hypotheses if and only if the correspondence f → ψf , given by
the equality

∫
f (x) ν (dx) = ⟨ψf , ν⟩ , ∀ν ∈ MH be one-to-one (f ∈ F , where f is the

set of those f for which
∫
f (x) ν (dx) is defined ∀ν ∈MH .

Proof. Necessity. Since the statistical structure {E, S, µHk
, k ∈ N} admits a con-

sistent criterion of Hypotheses and this family is strongly separable, there exist S-
measurable sets Xi, i ∈ N, such that

µHi
(Xj) =

{
1, if i = j,
0, if i ̸= j.

Let the function IXi
(x) ∈ F be correspond with µHi

∈MH (µHi
). Then

∫
IXi

(x)µHi
(dx)

=
∫
IXi

(x) · IXi
(x)µHi

(dx) = ⟨µHi
, µHi

⟩. Let the function fψ (x) = f1 (x) IXi
(x) be

corresponded with ψ1 ∈MH (µHi
). Then any ψ2 ∈MH (µHi

)
∫
fψ (x)ψ2 (x)µHi

(dx) =∫
fψ (x) · f2 (x) IXi

(x)µHi
(dx) =

∫
fψ (x) f2 (x)µHi

(dx) = ⟨ψ1, ψ2⟩. Let the function
f (x) =

∑
i∈N gi (x) IXi

(x) ∈ F be corresponded with the measure ν ∈ MH , ν =∑
i∈N

∫
gi (x)µHi

(dx) then ν1 (B) =
∑

i∈N
∫
B
g1i (x)µHi

(dx) , have
∫
f (x) ν1 (dx) =

⟨ν1, ν⟩ . so the necessity is proved.
Sufficiency. Let f ∈ F be corresponded with νf ∈ MH for which

∫
f (x) ν (dx) =

⟨νf , ν⟩ , then ψ1, ψ2 ∈MH (µHi
) we have

∫
fψ1 (x)ψ2 (dx)=⟨ψ1, ψ2⟩=

∫
f1 (x) f2 (x)µHi

(dx) .
So fψ1 = f1 for a. e. MHi

measures and fHi
(x) > 0,

∫
f 2
Hi

(x)µHi
(dx) < +∞,

µ∗
Hi

=
∫
fHi

(x)µHi
(dx) , then

⟨
µHi

, µHj

⟩
= 0 ∀i ̸= j, so the statistical structure

{E, S, µHi
, i ∈ N} is weakly separable, so cardN = χ0, so the statistical structure

{E, S, µHi
, i ∈ N} is strongly separable, then (see Theorem 3 [1]) admits a consistent

criterion of Hypotheses. The Theorem 2 is proved.
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