Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

ON THE CONVERGENCE OF FOURIER INTEGRAL MEANS OF FUNCTIONS DEFINED ON LOCALLY COMPACT ABELIAN GROUPS

Ugulava D.

Abstract. The problem of the pointwise convergence of special Fourier integral means of integrable with respect to a Haar measure functions defined on a locally compact the Abelian group is studied. Some examples illustrating the results are considered.

Keywords and phrases: Locally compact Abelian groups, dual groups, Fourier transform, Fourier integral means, Fejér integral, characteristic function.

AMS subject classification: 41A65, 41A35.

Let G be a locally compact Abelian Hausdorf group G and let \widehat{G} be its dual group, i.e. the set of all characters on G. \widehat{G} is also a locally compact Abelian group in the topology of uniform convergence of characters on compact subsets of G. $U_{\widehat{G}}$ will stand for the collection of all symmetric compact sets from \widehat{G} which are closures of neighborhoods of the unity in \widehat{G} . In papers [1-6] problems of approximate nature are considered for some spaces of real or complex valued functions and also measures defined on G.

Let I be an ordered unbounded set in \mathbb{R}^+ and consider a generalized sequence of sets $K_{\alpha} \in U_{\widehat{G}}$, such that $K_{\alpha} \subset K_{\beta}$ if $\alpha < \beta$ $(\alpha, \beta \in I)$ and $\bigcup_{\alpha \in I} K_{\alpha} = \widehat{G}$. For functions of $L^p(G)$, $1 \leq p \leq \infty$, i.e. for p-th power integrable functions on G with respect to the Haar measure μ $(L^{\infty}(G)$ denotes the space of essentially bounded on G functions with respect to μ) we have studied in [5-6] the following sequence of positive operators

$$\sigma_{K_{\alpha}}(f)(g) \equiv (f * V_{K_{\alpha}})(g) = \int_{G} f(h) V_{K_{\alpha}}(h^{-1}g) dh, \qquad (1)$$

where

$$V_{K_{\alpha}}(g) = (\operatorname{mes} K_{\alpha})^{-1} \widehat{((1)_{K_{\alpha}}(g))^2}, \quad K_{\alpha} \in U_{\widehat{G}}.$$
(2)

and $(1)_{K_{\alpha}}$ is the Fourier transform of the characteristic function $(1)_{K_{\alpha}}$ of the set K_{α} . We suppose that the Haar measure on G and \widehat{G} are normalized so that the inversion formula hold for functions $f \in L^1(G)$, $\widehat{f} \in L^1(\widehat{G})$.

With the help of well-known properties of the Fourier transform (see, for example, [7]) we obtain for the functions $f \in L^1(G)$

$$\sigma_{K_{\alpha}}(f)(g) = (\operatorname{mes} K_{\alpha})^{-1} \int_{G} f(h)\widehat{(1)_{K_{\alpha}}}(h^{-1}g)\widehat{(1)_{K_{\alpha}}}(h^{-1}g)dh$$
$$= (\operatorname{mes} K_{\alpha})^{-1} \int_{G} f(h)(1)\widehat{K_{\alpha}*(1)_{K_{\alpha}}}(h^{-1}g)dh$$
$$= (\operatorname{mes} K_{\alpha})^{-1} \int_{\widehat{G}} \widehat{f}(\chi)((1)_{K_{\alpha}}*(1)_{K_{\alpha}})(\chi^{-1})\chi(g)d\chi.$$

This means that if $f \in L^1(G)$, then defined by (1) operator $\sigma_{K_\alpha}(f)(g)$ can be written in the form of Fourier integral means.

It is proved in [3] that if $f \in L^p(G)$, $1 \le p < \infty$, and the sequence of sets $K_{\alpha} \in U_{\widehat{G}}$ satisfies the condition

$$\lim_{\alpha \to \infty} \frac{\operatorname{mes}(TK_{\alpha})}{\operatorname{mes}K_{\alpha}} = 1 \tag{3}$$

for all fixed nonempty $T \in U_{\widehat{G}}$, then

$$\lim_{\alpha \to 0} \|f - \sigma_{K_{\alpha}}(f)\|_{L^{p}(G)} = 0.$$
(4)

Here we study the problem of pointwise convergence of the operator $\sigma_{K_{\alpha}}$ for $f \in L^1(G)$ in the points of continuity of f. For the functions belonging to L^{∞} , in [3] it is proved that if f is continuous at a neighborhood of a set $S \subset G$ and the condition (3) is satisfied, then $\sigma_{K_{\alpha}}(f)$ converges uniformly on S as $\alpha \to \infty$. This result follows from the following approximate property of the kernels $V_{K_{\alpha}}$ [5]: If U is a nonempty element of $U_{\widehat{G}}$, then

$$\lim_{\alpha \to \infty} \int_{G \setminus U} V_{K_{\alpha}}(g) dg = 0.$$
(5)

It is interesting to remark in connection with this relation that convergence to the zero in (5) holds even if $\operatorname{mes} K_{\alpha}$ does not converges to the infinity if $\alpha \to \infty$. For example, if G is the group Z of whole numbers with respect to the addition, then \widehat{G} is the unit circle, which is a compact Abelian group with the operation of multiplication of complex numbers. If

$$K_{\alpha} = \{ e^{i\theta} : -\pi + \pi/\alpha \le \theta \le \pi - \pi/\alpha \}$$

and $n \in \mathbb{Z}$, then

$$\widehat{(1)_{K_{\alpha}}}(g) = (i\sqrt{2\pi})^{-1} \int_{K_{\alpha}} \xi^n d\xi$$
$$= \sqrt{2/\pi} n^{-1} \sin(\pi - \pi/\alpha) n, \quad \operatorname{mes} K_{\alpha} = 2\pi(\alpha - 1)/\alpha$$

and for any fixed $m \ge 1$

$$\lim_{\alpha \to \infty} \int_{|n| \ge m} V_{K_{\alpha}}(n) dn = \frac{2\alpha}{\pi^2(\alpha - 1)} \sum_{n=m}^{\infty} \lim_{\alpha \to \infty} (\sin^2(\pi - \pi/\alpha)n) / n^2 = 0.$$

Theorem. Let K_{α} be a sequence in $U_{\widehat{G}}$ satisfying (3), S is a compact set of G and U be a nonempty set from $U_{\widehat{G}}$. If a function $f \in L^1(G)$ is uniformly continuous at a neighborhood of S and the kernels $V_{K_{\alpha}}$ are uniformly bounded relative to $\alpha \in I$ on $G \setminus U$, i.e.

$$\lim_{\alpha} \sup_{g \in G \setminus U} V_{\alpha}(g) \le C, \tag{6}$$

where C depends only on U, then $\sigma_{K_{\alpha}}(f)(g)$ converges to f(g) uniformly on S.

Proof. Since f is uniform continuous on $S \in G$, given $\varepsilon > 0$ find a neighborhood $U \in U_{\widehat{G}}$ such that

$$|f(hg) - f(g)| < \varepsilon \text{ for all } g \in S, h \in U.$$
(7)

Ugulava D.

According to the equality $\int_G V_{K_{\alpha}}(g) dg = 1$ [6], we have

$$f(g) - \sigma_{K_{\alpha}}(f)(g) = \int_{G} (f(g) - f(h^{-1}g)) V_{K_{\alpha}}(h) dh$$

= $\int_{U} + \int_{G \setminus U} = I_1 + I_2.$ (8)

It follows from (7) that

$$I_1 \le \varepsilon \int_G V_{K_\alpha}(g) dg = \varepsilon.$$
(9)

According to (4) there exists a set $T \in U_{\widehat{G}}$, for which

$$\|f - f * V_T\|_{L^1(G)} < \varepsilon \tag{10}$$

If $\varphi \equiv f * V_T$, then

$$|\varphi(g)| = |\int_{G} f(h^{-1}g)V_{T}(h)dh| \le ||f||_{L^{1}(G)} ||V_{T}||_{L^{\infty}}(G).$$

The Fourier transform of $V_T \in L^1(G)$ has compact support in \widehat{G} . In [1] it is proved that functions of such type belong to the space L^{∞} too. Thus $\varphi = f * V_T \in L^1(G) \cap L^{\infty}(G)$. Applying this fact we obtain

$$I_{2} \leq \int_{G \setminus U} |f(h^{-1}g) - \varphi(h^{-1}g)| V_{K_{\alpha}}(h) dh$$
$$+ \int_{G \setminus U} |\varphi(h^{-1}g)| V_{K_{\alpha}}(h) dh + |f(g)| \int_{G \setminus U} V_{K_{\alpha}}(h) dh$$
$$\leq \lim_{\alpha} \sup_{g \in G \setminus U} V_{K_{\alpha}}(g) ||f - \varphi||_{L^{1}(G)} + (\sup_{g \in G} |\varphi(g)| + |f(g)|) \int_{G \setminus U} V_{K_{\alpha}}(h) dh$$

From here and relations (5)-(10), follows the validity of theorem. The condition (6) is valid for all groups, considered by us in [1]-[3]. For example, let $G = Q_p$ be the field of the *p*-adic numbers for a prime *p*. It is well known that Q_p is a locally compact Abelian group with respect to the addition operation and its dual group $\widehat{Q_p}$ is isomorphic to this addition group ([8], p. 50). For any fixed $\xi \in Q_p$ the additive character of additive group Q_p has the form $\chi_{\xi}(x) = \exp\{2\pi i \{\xi x\}_p\}$, where $\{\xi x\}_p$ is a fractional part of $\xi x \in Q_p$ ([8], p. 48). Let $n \in \mathbb{N}$ and K_n be the *p*-adic ball of the radius p^n with the center in zero, i.e. $K_n = \{h \in Q_p : |h|_p \leq p^n\}$, where $|h|_p$ is the *p*-adic norm of *h*. The Haar measure of this ball is $\operatorname{mesK}_n = p^n$ ([8], p. 59). In [8] (p. 62) it is proved that $\widehat{(1)_{K_n}}(\xi) = p^n$, if $|\xi|_p \leq p^{-n}$, and $\widehat{(1)_{K_n}}(\xi) = 0$ if $|\xi|_p > p^{-n+1}$. It follows from here that if $\xi \neq 0$ and $n \to \infty$, then condition (6) is fulfilled. It is clear that this condition is true for the above mentioned group G = Z.

Acknowledgement. This work has been fulfilled by financial support of Shota Rustaveli National Science Foundation (Grant FR/223/5-100/13).

REFERENCES

1. Ugulava D. On the approximation of functions on locally compact abelian groups. *Georgian Math. J.*, **6** (1999), 379-394.

2. Chantladze T., Kandelaki N., Ugulava D. Approximation of functions and measures on locally compact Abelian groups. *Proceedings of A. Razmadze Math. Inst.*, **140** (2006), 65-74.

3. Ugulava D. Some problems of approximation on locally compact abelian groups. *Bull. Georgian Academy Sciences*, **163** (2001), 440-445.

4. Ugulava D. An analogue of the Paley-Wiener theorem. (Russian) *Izv. Vyssh. Uchebn. Zaved. Mat.* **8**, 483 (2002), 65-71. English translation: *translation in Russian Math. (Iz. VUZ)* **46**, 8 (2002), 62-67.

5. Ugulava D. Approximation of functions on locally compact Abelian groups. *Georgian Math. J.*, **6** (2012), 19,1.

6. Ugulava D. On some approximation properties of a generalized Fejér integral. Bull. Georgian Academy Sciences, 6, 1 (2012), 32-38. 440-445.

7. Reiter H. Classical Harmonic Analysis and Locally Compact Groups. *Clarendon Press, Oxford*, 1968.

8. Vladimirov V.S., Volovich I.V., Zelenow E.I., P-adic Analysis and Mathematical Physics. *Fizmatlit*, 1994, (Russian). English translation: *World Scientific Publishing, Singapore*, 1994.

Received 21.05.2014; revised 22.09.2014; accepted 20.12.2014.

Author's address:

D. Ugulava Georgian Technical University 77, Kostava St., Tbilisi 0175 Georgia E-mail: duglasugu@yahoo.com