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SOLUTION OF SOME BOUNDARY VALUE PROBLEM OF STATICS
OF THE THEORY OF ELASTIC MIXTURE FOR A CIRCLE

Svanadze K.

Abstract. For the two-dimensional homogeneous equation of statics of the linear theory of
elasitc mixture, in the case a circle we consider the two boundary value problem which is
analogous to III and IV interior baundary value problem of the classic theory of elastisity.
On the basis of formulas analogous to Kolosov-Muskhelishvili our problems are reduced to
the Riemann-Hilbert problems for a circle, and owing to the above result, the solution of the
problems can be reduced to the first order linear differential equations.
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10 The homogeneous equation of statics of the linear theory of elastic mixture in the
complex form is written as [2]
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where up, p = 1, 4 are components of the displacement vector, z = x1 + ix2,
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mk, e3+k, k = 1, 2, 3 are expressed in terms of elastic constants [2].
In [2] M. Basheleishvili obtained the representations (Kolosov-Muskhelishvili type formu-

las)

U = (u1 + iu2, u3 + iu4)
T = mφ(z) +

1

2
ezφ′(z) + ψ(z), (2)

TU =
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(TU)4 − i(TU)3

)
=

∂
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[
(A− 2E)φ(z) +Bzφ′(z) + 2µψ(z)

]
, (3)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions, (TU)p, p =
1, 4, are components of the stress [1], ∂

∂S(x) = n1
∂

∂x2
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∂
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, n = (n1, n2)
T is the unit vector

of the outer normal, and E is the unit matrix;
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.

Here (see[1])
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∆0 = detm > 0,∆1 = detµ > 0,∆2 = det(A− 2E) > 0,

0 < A1 +A4 < 4, A1 +A4 − 4∆0∆1 > 0, (A1 +A4)
2 − 16∆0∆1 > 0. (4)

Introduce the vectors:

Un =

(
u1n1 + u2n2
u3n1 + u4n2

)
, Us =

(
u2n1 − u1n2
u4n1 − u3n2

)
, σn =

(
(TU)1n1 + (TU)2n2
(TU)3n1 + (TU)4n2

)
,

σs =

(
(TU)2n1 − (TU)1n2
(TU)4n1 − (TU)3n2

)
.

20 Let D+ = {z : |z| < 1} and L = {z : |z| = 1} . We consider the problems. Find, in the
domain D+, a vector U = (u1+iu2, u3+iu4)

T which belongs to the class C2(D+)∩C1,α(D+∪
L), is a solution of equation (1) and satisfying one of the following boundary conditions on L

2µ(Un(t))
+ = f (1)(t), (σs(t))

+ = F (1)(t), P roblem(III∗)+,

2µ(Us(t))
+ = f (2)(t), (σs(t))

+ = F (2)(t), P roblem(IV ∗)+,

where f (j) and F (j)(j = 1, 2) are real given vector-functions on L, satisfying certain conditions.
Using the Green formula [1] it is easy to prove.
Theorem 1. Solution of the BVP (III∗)+ is not unique. In this case two regular solutions

of the problem (III∗)+ differ by a rigid rotation, (U = (iεz, iεz)T , where ε is an arbitrary
constant).

Theorem 2. The boundary value problem (IV ∗)+ has a unique regular solution.
30 Consider the BVP (III∗)+. Using formulas (2) and (3) the boundary conditions can

be written as follows:

Re
{
e−iθ[Aφ(t) +Btφ′(t) + 2µψ(t)

}+
=

= Re
[
At−1φ(t) +Bφ

′
(t) + 2µtψ(t)

]+
= f (1)(t), t ∈ L, (5)

Re

{
e−iθ ∂

∂s(t)
[(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)]

}+

=

Re
{
i[(A−B − 2E)φ

′
(t) +Btφ

′′
(t) + 2µt2ψ

′
(t)]

}+
= F (1)(t), t ∈ L, (6)

where t = eiθ is the polar equation of L. f (1) ∈ C1,α(L), F (1) ∈ C0,α(L),
0 < α < 1,

∫
L

F (1)dS = 0.

Now note that, since φ(z) and ψ(z) are arbitrary analytic vector-functions, we can suppose
that

φj(z) =
∞∑
n=2

A(j)
n zn, ψj(z) =

∞∑
n=0

B(j)
n zn, |z| < 1, j = 1, 2, (7)

where A
(j)
n and B

(j)
n are constant (j = 1, 2).

Owing to the above reasoning, we can conclude that the boundary conditions (5) and (6)
are the Riemann - Hilbert problems for a circle |z| < 1.
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A solution of problems (5) and (6) can be represented in the form respectively (see [3])

Az−1φ(z) +Bφ
′
(z) + 2µzψ(z) =

1

2πi

∫
L

(t+ z)f (1)(t)

t(t− z)
dt+ iC1, (8)

(A−B − 2E)φ
′
(z) +Bzφ

′′
(z) + 2µz2ψ

′
(z) = − 1

2π

∫
L

(t+ z)F (1)(t)

t(t− z)
dt+ C2, (9)

where C1 and C2 are arbitrary real constant vectors. Rearing in mind (7) we arrive at the
conclusion

C1 =
1

2π

∫
L

f (1)(t)dt

t
, C2 =

1

2π

∫
L

F (1)(t)dt

t
= 0. (10)

Substituting (10) in (8) and (9) we obtain

Aφ(z) +Bzφ
′
(z) + 2µz2ψ(z) =

z2

πi

∫
L

f (1)(t)dt

t(t− z)
, (11)

(A−B − 2E)φ
′
(z) +Bzφ

′′
(z) + 2µz2ψ

′
(z) = − z

π

∫
L

f (1)(t)dt

t(t− z)
, (12)

The relations (11) and (12) yield

(B + E)φ
′
(z) + 2µzψ(z) =

z2

2πi

∫
L

f (1)(t)dt

t(t− z)2
+

z

2πi

∫
L

2f (1)(t) + iF (1)(t)

t(t− z)
dt. (13)

From(11) and (13) we have

φ
′
(z)−A

1

z
φ(z) = g(z), g(z) =

z2

2πi

∫
L

f (1)(t)dt

t(t− z)2
+

z

2π

∫
L

F (1)(t)dt

t(t− z)
. (14)

Combining equalities (11) and (14), we find that

ψ(z) =
µ−1

2
×

×

 1

πi

∫
L

f (1)(t)dt

t(t− z)
− B

2π

∫
L

F (1)(t)dt

t(t− z)
− Bz

2πi

∫
L

f (1)(t)dt

t(t− z)2
− (A+BA)φ(z)

 . (15)

It follows from (15) that the solution of the Problem (III∗)+ is reduced to finding solution
of the differential equation (14).

We write equation (14) in the form(
1
y

)
φ

′
(z)− A1 +A3y

z

(
1
y

)
φ(z) =

(
1
y

)
g(z), (16)

where y is an arbitrary real constant. Define y by the equation

y(A3y +A1) = A4y +A2. (17)
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Finally, the solution of equation (14) can be represented as follows

φ(z) =
1

y2 − y1

[
y2z

γ1 −y1zγ2
−zγ1 zγ2

] ∫ [
z−γ1 0
0 z−γ2

] [
1 y1
1 y2

]
g(z)dz (18)

where y1 and y2 are roots of the equation (17)

γj =
1

2
[A1 +A4 − (−1)j

√
(A1 +A4)2 − 16∆0∆1 > 0, j = 1, 2, (see(4)).

Substituting in formula (2) the value ψ(z) appearing in (15) and the value φ(z) appearing
in (18) we obtain the solution (in quadrature) of Problem (III∗)+.

40 The BVP (IV ∗)+ is solved quite analogously.
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