
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 28, 2014

TOWARDS THEOREM PROVING TECHNIQUES IN FORMULA SCHEMATA

Rukhaia M.

Abstract. The theorem proving techniques are divided into two parts, goal-directed and

refutational. In this paper we present a goal-directed proof-search algorithm, which is based

on a sequent calculus. Usually sequent calculus inference rules can be applied freely, producing

a redundant search space. The technique, called focusing, removes this nondeterminism and

redundancy in proof-search. Although we do not present a focused calculus, our algorithm is

obtained according to the principles of focusing, achieving similar effect.

Keywords and phrases: Theorem proving, formula schemata, focusing.

AMS subject classification: 03B70, 68T15.

1. Introduction. The proof theory takes its roots from G. Gentzen, when he
introduced a sequent calculus, Logische Kalkül, for first-order logic [10]. Since then,
proofs are heavily used in computer science, in particular, program and hardware
verification. This gave rise to the theorem proving, a new branch of mathematical
logic. There are various theorem proving techniques, like resolution, tableaux, etc. It
is well known that first-order logic is undecidable, therefore all complete proof-search
procedures are non-terminating.

The concept of term schematization was introduced in [5] to avoid non-termination
in symbolic computation procedures and to give finite descriptions of infinite deriva-
tions. Later, formula schemata for propositional logic was developed [1, 3] to deal
with schematic problems (graph coloring, digital circuits, etc.) in more uniform way
and a tableaux prover, called RegSTAB, for a class of formula schemata was imple-
mented [2].

In [6, 9] the language of formula schemata was extended to first-order logic and a
sequent calculus was defined, introducing a notion of proof schema. The aim of this
paper is to define a proof-search procedure using a sequent calculus, that will, for a
given formula schema, obtain a proof schema.

The sequent calculus LK leads to a redundant search space, since inference rules
can be applied freely. In [7], a concept of polarity was introduced and a focused sequent
calculus LC, based on polarity, was defined. In [8], LC was adopted to proof-search
and a sequent calculus LKF was obtained. The latter significantly reduced the proof-
search space.

To achieve the aim, we use a similar approach. Although we do not define a
focused sequent calculus for formula schemata, we give a proof-search procedure based
on principles of focusing.

2. Preliminaries. We define a schematic first-order language, following [6], that
is an extension of the language described in [1, 3] to first-order logic. It allows us to
specify an (infinite) set of first-order formulas by a finite term.



Towards Theorem Proving Techniques in Formula Schemata 103

We consider two sorts ω, to represent the natural numbers, and ι, to represent an
arbitrary first-order domain. Our language consists of countable sets of variables of
both sorts, and sorted n-ary function and predicate symbols partitioned into constant
function/predicate symbols and defined function/predicate symbols. The latter allows
primitive recursively defined functions/predicates in the language.

Terms are built from variables and constant function symbols as usual. We assume
the predefined constant functions zero 0: ω and successor s : ω → ω to be present. By
V (t) we denote a variable set of a term t, and by · we denote sequence of terms of
appropriate sort.

For every defined function symbol f , we assume that its sort is ω×τ1×· · ·×τn → τ
(with n ≥ 0 and τ ::= ω | ι | τ → τ), and we assume given two rewrite rules

f(0, x) → t0 f(s(y), x) → t[f(y, x)]

such that V (t0) ⊆ {x1, . . . , xn} and V (t[f(y, x)]) ⊆ {y, x1, . . . , xn}, and t0, t are terms
not containing f ; if a defined function symbol g occurs in t0 or t then g ≺ f . We
assume that these rewrite rules are primitive recursive, i.e. that ≺ is irreflexive.

We write t � t′ to denote that an expression t rewrites to an expression t′ in
arbitrarily many steps.

Formulas are built inductively from atoms using the logical connectives ¬, ∧, ∨,
⇒, ∀ and ∃ as usual. A variable occurrence in a formula is called bound if it is in the
scope of ∀ or ∃ connectives, otherwise it is called free. The notions of interpretation,
satisfiability and validity of formulas are defined in the usual classical sense.

Analogously to defined function symbols, we assume that for defined predicate
symbols rewrite rules are given and have an irreflexive order ≺ for the latter, to build
formula schemata.

Example 1. Let P : ω be a defined predicate symbol, R : ω×ι a constant predicate
symbol, and x : ι a variable. Let the rewrite rules for P be

P (0) → ∀xR(0, x) P (s(n)) → ∃x(R(n, x) ∧ P (n)).

Then we have P (2) � ∃x(R(2, x)∧∃x(R(1, x)∧∀xR(0, x))) which is equivalent to (by
renaming of bound variables) ∃x2(R(2, x2) ∧ ∃x1(R(1, x1) ∧ ∀x0R(0, x0))).

Proposition 1. Let A be a formula. Then every rewrite sequence starting at A
terminates, and A has a unique normal form.

Proof. Trivial, since all definitions are primitive recursive.
Sequents are expressions of the form Γ ⊢ ∆, where Γ and ∆ are multisets of formula

schemata. Sequents are denoted by S(x), where x are free variables occurring in S.
The sequent calculus LKs is defined as in [6, 9], but without the cut rule. The

proof axioms, which are called proof links in [6, 9], may appear only at the leaves of
a proof. A proof axiom corresponds to induction hypothesis, i.e. it is assumed that a
proof φ at step k proves a sequent S(k).

A proof schema Ψ is a tuple of LKs-proof pairs for φ1, . . . , φn proof symbols, where
each pair contains base and recursive case of inductive definition. The proof symbols
in a proof schema must be ordered in a sense that if i > j, φi must not contain a proof
axiom referring to φj. We also say that the end-sequent of φ1 is the end-sequent of Ψ.
For a formal definition of proof schemata we refer an interested reader to [6, 9].



104 Rukhaia M.

According to the above definition, it is easy to see that proof schemata naturally
represent infinite sequences of first-order proofs.

Proposition 2. The sequent calculus LKs is sound.
Proof. Although the calculus is not the same, proof is similar to the ones in [6, 9].

3. Focusing. The idea of focusing lies on the notion of polarity of formulas and
logical connectives. There are positive and negative polarities. Positive (negative)
formulas are constructed from atomic (negation of atomic) formulas and positive (neg-
ative) applications of the connectives. The polarity of connectives is isomorphic to
their truth table, where positive stands for false and negative stands for true.

These polarities does not affect the provability of formulas, but the shape of proofs
and proof-construction steps. Unlike Gentzen’s sequent calculus, the proof-construction
steps become deterministic using the focusing technique.

First of all, sequents are either focused or unfocused. Focused sequent consists of
positive formulas or negative literals and exactly one formula is in focus. Unfocused
sequents might contain arbitrary formulas. Second, inference rules are partitioned to
asynchronous and synchronous rules, where asynchronous ones are invertible 1 and
operate on unfocused sequents. Synchronous rules operate on focused sequents only,
and in general, they are not invertible, thus producing backtrack points.

Because of these restrictions, asynchronous rules are applied eagerly, until a focused
sequent is reached. Then synchronous rules decompose the focused formula, until the
branch is closed (i.e. positive literal is reached) or negative formula is obtained. In the
latter case the focus is dropped and asynchronous rules are applied again.

4. The algorithm. Considering the method described in the previous section,
we end-up with the algorithm, described below, for efficient proof-search for formula
schemata.

To handle quantifiers, we use similar method described in [4]. This means that
we work with skolemized 2 sequents and the choice for the quantifier instance term
is postponed until it is obtained via unification. Extension of the algorithm to non-
skolemized sequents is a subject of future work.

Next, note that all propositional rules in LKs are invertible and the binary rules
duplicate the context. Thus, the application of binary rules must be postponed as far
as possible to reduce the search space. Hence, the unary rules must be applied first
when applicable.

Construction of a proof schema of a sequent is divided into two tasks: first the LKs-
proof for base case and then the LKs-proof for recursive case must be constructed. The
difference between these two lies on the usage of proof axiom and rewriting inference
rules (i.e. they are obsolete in the base case).

In the proof-search of recursive case, rewriting of defined function and predicate
symbols must be done in a way that each symbol is rewritten only one step down (e.g.
going from k + 1 to k). After such rewriting, if no other rules are applicable on a
sequent, the proof axiom should be introduced or algorithm must terminate with “no

1Informally, invertible rule means that it can be applied in a unique way on a selected formula(s).
2Informally, a sequent is skolemized if it does not contain universal quantifiers on the right-hand

side and existential quantifiers on the left-hand side.



Towards Theorem Proving Techniques in Formula Schemata 105

proof found”. If the sequent is a match instance of the end-sequent modulo k parameter,
then a proof axiom to itself must be made; otherwise a proof axiom referring to a new
proof symbol must be created and new proof-search for this sequent must be scheduled.

It is easy to see that this algorithm is terminating, therefore it is not complete. In
fact, the unsatisfiability of formula schemata is a property which is not semi-decidable
even for propositional schemata [3], thus no complete algorithm exists.

5. Conclusions. We presented a proof-search algorithm for formula schemata,
but the algorithm can be improved significantly. The main task is to handle arbitrary
sequents. An algorithm, that takes an arbitrary sequent and produces its skolemized
version must be defined, together with the algorithm, that will deskolemize a result of
the proof-search procedure. Alternatively, existing algorithm can be modified to accept
arbitrary sequents, but in this case better termination condition should be provided.
Finally, the algorithms must be implemented and their efficiency must be tested.

Acknowledgment. This work was supported by the project No. PG/6/4-102/13
of the Shota Rustaveli National Science Fundation.

R E F E R E N C E S

1. Aravantinos V., Caferra R., Peltier N. A Schemata calculus for propositional logic. Tableaux’09,
LNCS, 5607 (2009), 32-46.

2. Aravantinos V., Caferra R., Peltier N. RegSTAB: A SAT-solver for propositional iterated
schemata. International Joint Conference on Automated Reasoning, (2010), 309-315.

3. Aravantinos V., Caferra R., Peltier N. Decidability and undecidability results for propositional
schemata. Journal of Artificial Intelligence Research, 40 (2011), 599-656.

4. Autexier S., Mantel H., Stephan W. Simultaneous quantifier elimination. KI-98: Advances in
Artificial Intelligence, Springer, (1998), 141-152.

5. Hong Chen H., Jieh Hsiang J., Kong H.C. On finite representations of infinite sequences of
terms. Edited by S. Kaplan and M. Okada, Conditional and Typed Rewriting Systems, Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 516, (1991), 99-114.

6. Dunchev C., Leitsch A., Rukhaia M., Weller D. CERES for First-Order Schemata. Technical
report, Vienna University of Technology, 2012. Available at: http://arxiv.org/abs/1303.4257.

7. Girard J.Y. A new constructive logic: classical logic. Mathematical Structures in Computer
Science, 1, 3 (1991), 255-296.

8. Liang C., Miller D. Focusing and polarization in linear, intuitionistic, and classical logics.
Theoretical Computer Science, 410, 46 (2009), 4747-4768.

9. Rukhaia M. About Cut-Elimination in Schematic Proofs. A monograph. Lambert Academic
Publishing, Saarbrücken, 2013.

10. Takeuti G. Proof Theory. North Holland, second edition, 1987.

Received 25.05.2014; revised 22.11.2014; accepted 27.12.2014.

Author’s address:

M. Rukhaia
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
E-mail: mrukhaia@logic.at




