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AN OBJECTIVE INFINITE SAMPLE WELL-FOUNDED ESTIMATE OF A
USEFUL SIGNAL IN THE LINEAR ONE-DIMENSIONAL STOCHASTIC MODEL

Pantsulaia G., Kintsurashvili M.

Abstract. It is shown that Hﬁ := inf, sup,,>, IA}; and him?n := sup,, inf,,>p f,; are objec-
tive infinite sample well-founded estimates of a useful signal  in the linear one-dimensional
stochastic model & = 0 + Ay (k € N), where #(-) denotes a counting measure, Ay is a se-
quence of independent identically distributed random variables on R with strictly increasing
continuous distribution function F, expectation of A; does not exist and T}, : RN — R (n € N)
is defined by T, ((zx)ren) = —F~H(n ' #({x1, -+ , 2} N (—00;0])) for (z1)ren € RY.
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1. Introduction. In [1], concepts of subjective and objective infinite sample well-
founded estimates of a useful signal in the linear one-dimensional stochastic model were
introduced by using the notion of a Haar null set introduced by J.P.R. Christensen [2].

In [3], a separation problem for the family of Borel and Baire G-powers of shift-
measures on R for an arbitrary infinite additive group G was studied. It was proved
that T,, : R" — R (n € N) defined by Tp,(z1,- -+ ,z,) = —F '(n '#{z1, - , 2.} N
(—o00;0])) for (xq1,---,x,) € R", was a well-founded estimator of a useful signal
in the linear one-dimensional stochastic model & = 6 + Ay (k € N), where #(-)
denotes a counting measure, Ay is a sequence of independent identically distributed
random variables on R with strictly increasing continuous distribution function F' and
expectation of A; does not exist. . -

The purpose of the present manuscript is to show that im7), := inf, sup, >, T

and hﬁﬁ := sup,, inf,,>, fn are objective infinite sample well-founded estimates of a
useful signal 6 in the same model.

2. Auxiliary notions and facts from functional analysis and measure
theory. Let V be a complete metric linear space, by which we mean a vector space
(real or complex) with a complete metric for which the operations of addition and
scalar multiplication are continuous. When we speak of a measure on V we will always
mean a nonnegative measure that is defined on the Borel sets of V and is not identically
zero. We write S + v for the translation of a set S C 'V by a vector v € V.

Definition 1 ([4], Definition 1, p. 221). A measure y is said to be transverse
to a Borel set S C V if the following two conditions hold:

(i) There exists a compact set U C V for which 0 < u(U) < 1;

(ii) wu(S+v)=0 for every v € V.

Definition 2 ([4], Definition 2, p. 222; [5], p. 1579). A Borel set S C V is
called shy if there exists a measure transverse to S. More generally, a subset of V is
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called shy if it is contained in a shy Borel set. The complement of a shy set is called
a prevalent set. We say that a set is a Haar ambivalent set if it is neither shy nor
prevalent.

Definition 3 ([4], p. 226). We say "almost every” element of V satisfies some
given property, if the subset of V on which this property holds is prevalent.

Let RY be a topological vector space of all real valued sequences R® equipped with
Tychonoff metric p defined by p((zx)ren, (Yr)ken) = Y open |26 — yrl/28(1 + |z — yrl)
for () ke, (Yr)ren € R,

Lemma 1 ([6], Lemma 5, p.78). Let J be an arbitrary subset of N. We set

Ay ={(x)ien: 2; >0 forie J & z; <0 fori e N\ J}.

Then the family of subsets ® ={A;:J C N} has the following properties:
(1) every element of ® is a Haar ambivalent set.
(it) Ay, N Ay =0 for all different Jy, Jo C N.
(iii) @ is a partition of RY such that card(®) = 2%0.
Suppose that © is a subset of the infinite-dimensional topological vector space RY.
In the information transmission theory we consider the linear one-dimensional
stochastic system

(&)ren = (Or)ren + (Ak) ke, (1)

where (0x)ren € © is a sequence of useful signals, (Ag)ren is a sequence of indepen-
dent identically distributed random variables (the so-called generalized “white noise”)
defined on some probability space (€2, F, P) and (&x)ren is a sequence of transformed
signals. Let p be a Borel probability measure on R defined by a random variable A;.
Then the N-power of the measure p denoted by p" coincides with the Borel probability
measure on RY defined by the generalized “white noise”, i.e.,

(VX)(X € B(RY) = pN(X) = PHw :w € Q & (Ap(w))ren € X})),

where B(RY) is the Borel o-algebra of subsets of RY.
Following [7], a general decision in the information transmission theory is that the
Borel probability measure A, defined by the sequence of transformed signals (&x)ren

coincides with (,uN) o for some 6y € © provided that

(360) (60 € © = (VX)(X € B(RY) = A(X) = (i), (X)),

where (u"), (X) = (X — b)) for X € B(RY).
Here we consider a particular case of the above model (1) when a set of useful
signals © has the form

0={(0,0,---):0 R}
For § € R, a measure ) defined by
py = pg X g X -+

where pg is a 0-shift of u (i.e., ug(X) = (X —0) for X € B(R)), is called the N-power
of the @-shift of  on R. Tt is obvious that uj = (MN)(” -y
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Following concepts of the theory of statistical decisions, a triplet (RN, B(RY), ul)gco
with ©® C R is called a statistical structure describing the linear one-dimensional
stochastic model (1).

Definition 4. We set R = R U {£oco}. Let S(R) denote a minimal o-algebra
of subsets of R generated by singletons of R. A (B(RY), S(R))-measurable function
T : RN — R is called an infinite sample well-founded estimate of a parameter 6 for the
family (1} )geo if the condition

pip ({(z1)ken : (Tx)ken € RY & T((wh)ken) = 0}) =1

holds for each 6§ € © :=R.

Lemma 2 ([3], Theorem 4.2, p. 483). Let F' be a strictly increasing continuous
distribution function on R and let p be a Borel probability measure on R defined by
F. For 8 € R, we set Fy(z) = F(x — 0)(x € R) and denote by pp a Borel probability
measure on R defined by Fy. Then estimators mﬁ = inf,, sumeNﬁ,/1 and mﬁ =
sup,, inf,,,>, ﬁ; are infinite sample consistent estimators of a parameter 6 for the family
(15)ger, where T, :RY 5 R s defined by

(V(zk)ken € RY — ﬁ((xk)keN) = _F_1<n_1#({$17 o, @} N (=003 0]))).

Below we give a certain modification of Definition 5.1 introduced in [1] (see, p. 66).

Definition 5. An infinite sample well-founded estimate 7' : RN — R of a parameter
0 € R is called subjective if there is a null hypothesis Hy : 0 = 6y (6y € R) which is
accepted or rejected for ”almost every” infinite sample by T or a region of the rejection
of the Main Assumption that the Borel probability measure A defined by the sequence of
transformed signals (& )ren coincides with (uN) % for some 6y € R is shy or prevalent.
Otherwise, the estimate T is called objective.

3. Main result. The following statement takes place. . .

Theorem. Under conditions of Lemma 2, limT,, := inf,, SUP, >y I and imT,, =
sup,, infmZnT;L are objective infinite sample well-founded estimates.

Proof. We consider the proof of the theorem only for mﬁ The proof of the
theorem for lim7,, can be obtained similarly. .

By Lemma 2 we know that lim7, := inf, sup,,>, T;, is an infinite sample well-
founded estimate of a parameter § € R. We have to show that (mﬁ)*l(ﬁ) is a Haar
ambivalent set for cach 6 € R. Let 6 € R and (x,)ren € (Iim7,,)"*(#). This means that

inf sup (— F~'(m™"#({z1, -+ , 2} N (—00;0])))) = 6.

n m>n
Setting J = {k : zx < 0}, let consider a set
AJ:{(yk)keN : ykSOforkEJ&yk>Ofork:€N\J}

Then o
Ay C (lian)_l(Q).
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_ By Lemma 1 we know that A; is a Haar ambivalent set which implies that
(lim7},)~*(#) is not shy. Since for 6; # 6 we have (lim7,,)~*(8) N (LimT,) "' (6;) = 0 we
deduce that (Mﬁ)*l(e) is a Haar ambivalent set.

Notice that the region of the rejection of all null hypothesis Hy : 0 = 6y (6y € R)
coincides with a set (-Im1T},) ™ (—o0) U (-im7T},) ™ (4-00) which is also a Haar ambivalent
set.

This ends the proof of the theorem.
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