Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

AN OBJECTIVE INFINITE SAMPLE WELL-FOUNDED ESTIMATE OF A USEFUL SIGNAL IN THE LINEAR ONE-DIMENSIONAL STOCHASTIC MODEL

Pantsulaia G., Kintsurashvili M.

Abstract. It is shown that $\overline{\lim T_n} := \inf_n \sup_{m \ge n} \widetilde{T_m}$ and $\underline{\lim T_n} := \sup_n \inf_{m \ge n} \widetilde{T_m}$ are objective infinite sample well-founded estimates of a useful signal θ in the linear one-dimensional stochastic model $\xi_k = \theta + \Delta_k$ $(k \in \mathbb{N})$, where $\#(\cdot)$ denotes a counting measure, Δ_k is a sequence of independent identically distributed random variables on \mathbb{R} with strictly increasing continuous distribution function F, expectation of Δ_1 does not exist and $T_n : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ $(n \in \mathbb{N})$ is defined by $T_n((x_k)_{k \in \mathbb{N}}) = -F^{-1}(n^{-1}\#(\{x_1, \cdots, x_n\} \cap (-\infty; 0]))$ for $(x_k)_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.

Keywords and phrases: An objective infinite-sample well-founded estimate, shy set, prevalence, Haar ambivalent.

AMS subject classification: 91B02, 91B06, 91B70

1. Introduction. In [1], concepts of subjective and objective infinite sample wellfounded estimates of a useful signal in the linear one-dimensional stochastic model were introduced by using the notion of a Haar null set introduced by J.P.R. Christensen [2].

In [3], a separation problem for the family of Borel and Baire *G*-powers of shiftmeasures on \mathbb{R} for an arbitrary infinite additive group *G* was studied. It was proved that $T_n : \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N})$ defined by $T_n(x_1, \dots, x_n) = -F^{-1}(n^{-1}\#(\{x_1, \dots, x_n\} \cap$ $(-\infty; 0]))$ for $(x_1, \dots, x_n) \in \mathbb{R}^n$, was a well-founded estimator of a useful signal θ in the linear one-dimensional stochastic model $\xi_k = \theta + \Delta_k$ $(k \in \mathbb{N})$, where $\#(\cdot)$ denotes a counting measure, Δ_k is a sequence of independent identically distributed random variables on \mathbb{R} with strictly increasing continuous distribution function *F* and expectation of Δ_1 does not exist.

The purpose of the present manuscript is to show that $\overline{\lim}\widetilde{T_n} := \inf_n \sup_{m \ge n} \widetilde{T_m}$ and $\underline{\lim}\widetilde{T_n} := \sup_n \inf_{m \ge n} \widetilde{T_m}$ are objective infinite sample well-founded estimates of a useful signal θ in the same model.

2. Auxiliary notions and facts from functional analysis and measure theory. Let \mathbb{V} be a complete metric linear space, by which we mean a vector space (real or complex) with a complete metric for which the operations of addition and scalar multiplication are continuous. When we speak of a measure on \mathbb{V} we will always mean a nonnegative measure that is defined on the Borel sets of \mathbb{V} and is not identically zero. We write S + v for the translation of a set $S \subseteq \mathbb{V}$ by a vector $v \in \mathbb{V}$.

Definition 1 ([4], Definition 1, p. 221). A measure μ is said to be transverse to a Borel set $S \subset \mathbb{V}$ if the following two conditions hold:

(i) There exists a compact set $U \subset \mathbb{V}$ for which $0 < \mu(U) < 1$;

(ii) $\mu(S+v) = 0$ for every $v \in \mathbb{V}$.

Definition 2 ([4], **Definition 2, p. 222;** [5], p. 1579). A Borel set $S \subset \mathbb{V}$ is called shy if there exists a measure transverse to S. More generally, a subset of \mathbb{V} is

called shy if it is contained in a shy Borel set. The complement of a shy set is called a prevalent set. We say that a set is a Haar ambivalent set if it is neither shy nor prevalent.

Definition 3 ([4], p. 226). We say "almost every" element of \mathbb{V} satisfies some given property, if the subset of \mathbb{V} on which this property holds is prevalent.

Let $\mathbb{R}^{\mathbb{N}}$ be a topological vector space of all real valued sequences \mathbb{R}^{∞} equipped with Tychonoff metric ρ defined by $\rho((x_k)_{k\in\mathbb{N}}, (y_k)_{k\in\mathbb{N}}) = \sum_{k\in\mathbb{N}} |x_k - y_k|/2^k(1 + |x_k - y_k|)$ for $(x_k)_{k\in\mathbb{N}}, (y_k)_{k\in\mathbb{N}} \in \mathbb{R}^{\infty}$.

Lemma 1 ([6], Lemma 5, p.78). Let J be an arbitrary subset of \mathbb{N} . We set

$$A_J = \{ (x_i)_{i \in \mathbb{N}} : x_i \ge 0 \text{ for } i \in J \& x_i < 0 \text{ for } i \in \mathbb{N} \setminus \mathbb{J} \}.$$

Then the family of subsets $\Phi = \{A_J : J \subseteq \mathbb{N}\}$ has the following properties:

(i) every element of Φ is a Haar ambivalent set.

(*ii*) $A_{J_1} \cap A_{J_2} = \emptyset$ for all different $J_1, J_2 \subseteq \mathbb{N}$.

(iii) Φ is a partition of $\mathbb{R}^{\mathbb{N}}$ such that $card(\Phi) = 2^{\aleph_0}$.

Suppose that Θ is a subset of the infinite-dimensional topological vector space $\mathbb{R}^{\mathbb{N}}$. In the information transmission theory we consider the linear one-dimensional stochastic system

$$(\xi_k)_{k\in\mathbb{N}} = (\theta_k)_{k\in\mathbb{N}} + (\Delta_k)_{k\in\mathbb{N}},\tag{1}$$

where $(\theta_k)_{k\in\mathbb{N}} \in \Theta$ is a sequence of useful signals, $(\Delta_k)_{k\in\mathbb{N}}$ is a sequence of independent identically distributed random variables (the so-called generalized "white noise") defined on some probability space (Ω, \mathcal{F}, P) and $(\xi_k)_{k\in\mathbb{N}}$ is a sequence of transformed signals. Let μ be a Borel probability measure on \mathbb{R} defined by a random variable Δ_1 . Then the N-power of the measure μ denoted by $\mu^{\mathbb{N}}$ coincides with the Borel probability measure on $\mathbb{R}^{\mathbb{N}}$ defined by the generalized "white noise", i.e.,

$$(\forall X)(X \in \mathcal{B}(\mathbb{R}^{\mathbb{N}}) \to \mu^{\mathbb{N}}(X) = P(\{\omega : \omega \in \Omega \& (\Delta_k(\omega))_{k \in \mathbb{N}} \in X\})),$$

where $\mathcal{B}(\mathbb{R}^{\mathbb{N}})$ is the Borel σ -algebra of subsets of $\mathbb{R}^{\mathbb{N}}$.

Following [7], a general decision in the information transmission theory is that the Borel probability measure λ , defined by the sequence of transformed signals $(\xi_k)_{k \in \mathbb{N}}$ coincides with $(\mu^{\mathbb{N}})_{\theta_0}$ for some $\theta_0 \in \Theta$ provided that

$$(\exists \theta_0)(\theta_0 \in \Theta \to (\forall X)(X \in \mathcal{B}(\mathbb{R}^{\mathbb{N}}) \to \lambda(X) = (\mu^{\mathbb{N}})_{\theta_0}(X))),$$

where $(\mu^{\mathbb{N}})_{\theta_0}(X) = \mu^N(X - \theta_0)$ for $X \in \mathcal{B}(\mathbb{R}^{\mathbb{N}})$.

Here we consider a particular case of the above model (1) when a set of useful signals Θ has the form

$$\Theta = \{(\theta, \theta, \cdots) : \theta \in \mathbb{R}\}$$

For $\theta \in \mathbb{R}$, a measure $\mu_{\theta}^{\mathbb{N}}$ defined by

$$\mu_{\theta}^{N} = \mu_{\theta} \times \mu_{\theta} \times \cdots,$$

where μ_{θ} is a θ -shift of μ (i.e., $\mu_{\theta}(X) = \mu(X - \theta)$ for $X \in \mathcal{B}(\mathbb{R})$), is called the N-power of the θ -shift of μ on \mathbb{R} . It is obvious that $\mu_{\theta}^{\mathbb{N}} = (\mu^{\mathbb{N}})_{(\theta,\theta,\dots)}$.

Following concepts of the theory of statistical decisions, a triplet $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}(\mathbb{R}^{\mathbb{N}}), \mu_{\theta}^{\mathbb{N}})_{\theta \in \Theta}$ with $\Theta \subseteq \mathbb{R}$ is called a statistical structure describing the linear one-dimensional stochastic model (1).

Definition 4. We set $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. Let $\mathcal{S}(\overline{\mathbb{R}})$ denote a minimal σ -algebra of subsets of $\overline{\mathbb{R}}$ generated by singletons of $\overline{\mathbb{R}}$. A $(\mathcal{B}(\mathbb{R}^{\mathbb{N}}), \mathcal{S}(\overline{\mathbb{R}}))$ -measurable function $T : \mathbb{R}^{\mathbb{N}} \to \overline{\mathbb{R}}$ is called an infinite sample well-founded estimate of a parameter θ for the family $(\mu_{\theta}^{\mathbb{N}})_{\theta \in \Theta}$ if the condition

$$\mu_{\theta}^{\mathbb{N}}(\{(x_k)_{k\in\mathbb{N}}: (x_k)_{k\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}} \& T((x_k)_{k\in\mathbb{N}})=\theta\})=1$$

holds for each $\theta \in \Theta := \mathbb{R}$.

Lemma 2 ([3], Theorem 4.2, p. 483). Let F be a strictly increasing continuous distribution function on R and let μ be a Borel probability measure on R defined by F. For $\theta \in R$, we set $F_{\theta}(x) = F(x - \theta)(x \in R)$ and denote by μ_{θ} a Borel probability measure on \mathbb{R} defined by F_{θ} . Then estimators $\overline{\lim T_n} := \inf_n \sup_{m \ge n} \widetilde{T_m}$ and $\underline{\lim T_n} :=$ $\sup_n \inf_{m \ge n} \widetilde{T_m}$ are infinite sample consistent estimators of a parameter θ for the family $(\mu_{\theta}^{\mathbb{N}})_{\theta \in \mathbb{R}}$, where $\widetilde{T_n} : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ is defined by

$$(\forall (x_k)_{k\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}\to\widetilde{T_n}((x_k)_{k\in\mathbb{N}})=-F^{-1}(n^{-1}\#(\{x_1,\cdots,x_n\}\cap(-\infty;0]))).$$

Below we give a certain modification of Definition 5.1 introduced in [1] (see, p. 66). **Definition 5.** An infinite sample well-founded estimate $T : \mathbb{R}^{\mathbb{N}} \to \overline{\mathbb{R}}$ of a parameter $\theta \in \mathbb{R}$ is called subjective if there is a null hypothesis $H_0 : \theta = \theta_0$ ($\theta_0 \in \mathbb{R}$) which is accepted or rejected for "almost every" infinite sample by T or a region of the rejection of the Main Assumption that the Borel probability measure λ defined by the sequence of transformed signals $(\xi_k)_{k\in\mathbb{N}}$ coincides with $(\mu^{\mathbb{N}})_{\theta_0}$ for some $\theta_0 \in \mathbb{R}$ is shy or prevalent. Otherwise, the estimate T is called objective.

3. Main result. The following statement takes place.

Theorem. Under conditions of Lemma 2, $\overline{\lim}\widetilde{T_n} := \inf_n \sup_{m \ge n} \widetilde{T_m}$ and $\underline{\lim}\widetilde{T_n} := \sup_n \inf_{m \ge n} \widetilde{T_m}$ are objective infinite sample well-founded estimates.

Proof. We consider the proof of the theorem only for $\overline{\lim}T_n$. The proof of the theorem for $\underline{\lim}\widetilde{T_n}$ can be obtained similarly.

By Lemma 2 we know that $\overline{\lim}\widetilde{T_n} := \inf_n \sup_{m \ge n} \widetilde{T_m}$ is an infinite sample wellfounded estimate of a parameter $\theta \in \mathbb{R}$. We have to show that $(\overline{\lim}\widetilde{T_n})^{-1}(\theta)$ is a Haar ambivalent set for each $\theta \in \overline{\mathbb{R}}$. Let $\theta \in \overline{\mathbb{R}}$ and $(x_k)_{k \in \mathbb{N}} \in (\overline{\lim}\widetilde{T_n})^{-1}(\theta)$. This means that

$$\inf_{n} \sup_{m \ge n} \left(-F^{-1}(m^{-1} \#(\{x_1, \cdots, x_m\} \cap (-\infty; 0]))) \right) = \theta.$$

Setting $J = \{k : x_k \le 0\}$, let consider a set

$$A_J = \{ (y_k)_{k \in \mathbb{N}} : y_k \le 0 \text{ for } k \in J \& y_k > 0 \text{ for } k \in \mathbb{N} \setminus \mathbb{J} \}.$$

Then

$$A_J \subseteq (\overline{\lim}\widetilde{T_n})^{-1}(\theta).$$

By Lemma 1 we know that A_J is a Haar ambivalent set which implies that $(\overline{\lim}\widetilde{T_n})^{-1}(\theta)$ is not shy. Since for $\theta_1 \neq \theta$ we have $(\overline{\lim}\widetilde{T_n})^{-1}(\theta) \cap (\overline{\lim}\widetilde{T_n})^{-1}(\theta_1) = \emptyset$ we deduce that $(\overline{\lim}\widetilde{T_n})^{-1}(\theta)$ is a Haar ambivalent set.

Notice that the region of the rejection of all null hypothesis $H_0: \theta = \theta_0 \ (\theta_0 \in \mathbb{R})$ coincides with a set $(\overline{\lim}\widetilde{T_n})^{-1}(-\infty) \cup (\overline{\lim}\widetilde{T_n})^{-1}(+\infty)$ which is also a Haar ambivalent set.

This ends the proof of the theorem.

REFERENCES

1. Pantsulaia G., Kintsurashvili M. Why is Null Hypothesis rejected for "almost every" infinite sample by some Hypothesis Testing of maximal reliability?. *Journal of Statistics: Advances in Theory and Applications*, **11**, 1 (2014), 45-70.

2. Christensen J.R. Topology and Borel Structure. Amsterdam: North-Holland Publishing Company, 1974.

3. Zerakidze Z., Pantsulaia G., Saatashvili G. On the separation problem for a family of Borel and Baire G-powers of shift-measures on \mathbb{R} . Ukrainian Math. J., **65**, 4 (2013), 470-485.

4. Hunt B.R., Sauer T., Yorke J.A. Prevalence: A Translation-Invariant "Almost Every" On Infinite-Dimensional Spaces, *Bulletin (New Series) of the American Mathematical Society*, **27(2)**, 10 (1992), 217-238.

5. Balka R., Buczolich Z., Elekes M. Topological Hausdorff dimension and level sets of generic continuous functions on fractals. *Chaos Solitons Fractals*, **45**, 12 (2012), 1579-1589.

6. Pantsulaia G.R. Invariant and Quasiinvariant Measures in Infinite-Dimensional Topological Vector Spaces. Nova Science Publishers, Inc., New York, 2007.

7. Ibramkhallilov I.Sh., Skorokhod A.V. On Well-off Estimates of Parameters of Stochastic Processes. (Russian), *Kiev*, 1980.

Received 22.05.2014; revised 10.10.2014; accepted 25.12.2014.

Authors' addresses:

G. Pantsulaia
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
E-mail: g.pantsulaia@gtu.ge

M. Kintsurashvili Department of Mathematics Georgian Technical University 77, Kostava St., Tbilisi 0175 Georgia E-mail: m.kintsurashvili@gtu.ge