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Abstract. It is proved that the linear problem of static deformation of the Reissner plate is

solvable and the approximate process is convergent.
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In [1] it is noted that the construction of the theory of boundary value problems
and the substantiation of approximate methods for the Reissner model, which takes
into account both geometrical nonlinearity and shear stresses, is one of the unsolved
mathematical problems of plate and shell theory. The question of the solvability of
two-dimensional variants of the Reissner system has not been investigated because of
the complex nature of nonlinearity.

The present paper considers a three-layer plate which is uniformly loaded with
respect to the width. This assumption enables us to discard one variable together with
concomitant unknown functions in the system of equations which in [2] is written in
the divergent form.

A method is proposed here for the solution of a boundary value problem, which
consists in reducing the initial system to some integro-differential system of equations.
This technique makes it possible to find the required a priori estimates. In the discus-
sion of this issue, we apply the method of proof used in [3] and [4].

Let us assume that the three-layer plate is homogeneous and has the facial layers
of the same thickness.

The deformation of the plate under the above assumptions can be described by the
following system of ordinary differential equations

N ′ = 0, (1.1)

M ′ −Q = 0, (1.2)

[(N +M)w′ +Q]′ −Qw′ = −q, (1.3)

where

N =
2Eh1

1− ν2

[
u′ +

1

2
(w′)2

]
, M =

2Eh1(h1 + h2)
2

2(1− ν2)
β′, Q = (h1 + h2)G(β + w′).

The sought functions are u = u(x), β = β(x) and w = w(x), where u and w are
the displacements of the midsurface point along x and z, and β is the rotation angle of
the normal in the xz-plane. The given function q = q(x) corresponds to the transverse
load, x is a spatial load, 0 ≤ x ≤ l; h1, h2 are the thicknesses of the middle and the outer
layers; G, E are the elasticity and rigidity moduli, ν is Poissons ratio, 0 < ν < 0.5.
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We complement (1.1)-(1.3) with the following boundary conditions

u(0) = u(l) = 0, w(0) = w(l) = 0, M(0) = M(l) = 0, (2)

Let us transform system (1.1)-(1.3). Using (1.1), twice integrating and taking into
account the boundary condition for u, we obtain

u = −1

2

∫ x

0

(w′(ξ))2 dx+
x

2l

∫ l

0

(w′(x))2 dx. (3)

Now let us express the function β in terms of w. To this end, we consider the
problem

v′′ − k2v = f, (4)

v′(0) = v′(l) = 0. (5)

We write a solution of (4), (5) in the form v = v1 + v2, where v1 satisfies (4) and
the condition v1(0) = v1(l) = 0, while v2 is a particular solution of equation (4) for
f = 0, such that (5) is fulfilled on the boundary when v1 + v2. v1 can be constructed
by means of the Green function using the formula

v1(x) =

∫ l

0

G(x, ξ)f(ξ) dx,

G(x, ξ) =


−sinh(αξ) sinh[α(l − x)]

α sinh(αl)
for ξ ≤ x,

−sinh(αx) sinh[α(l − ξ)]

α sinh(αl)
for ξ > x.

As to the summand v2, it is equal to C1l
kx + C2l

−kx, where C1 and C2 are the
uniquely defined constants.

Let us apply the reasoning, which we have used above for (4), (5), to (1.2) and the
condition β′(0) = β′(l) = 0 implied by (2). As a result we come to the equality

β =
α2

sinhαl

[
coshα(l− x)

∫ x

0

w(ξ) sinhαξ dξ − coshαx

∫ l

x

w(ξ) sinhα(l− ξ) dξ

]
, (6)

where

α2 =
2G(1− ν2)

Eh1(h1 + h2)
, α > 0.

Using (3) and (6) in (1.3), we obtain[
γ0 + γ1

∫ l

0

(w′)2dx+ γ(x,w)

]
w′′ + α2γ(x,w) = −q, (7)

where

γ0 = (h1 + h2)G, γ1 =
Eh1

l(1− ν2)
,

γ(x,w) = γ0w − γ2

{
sinh[α(l − x)]

∫ x

0

w(ξ) sinh(αξ) dξ

+ sinh(αx)

∫ l

x

w(ξ) sinh[α(l − ξ)] dξ

}
, γ2 =

αγ0
sinh(αl)

.
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From (2) we take the condition

w(0) = w(l) = 0. (8)

(7), (8) form an independent problem for w.
Theorem. Let the conditions

q ∈ L2(0, 1)

and the inequality
(h1 + h2)

3l2(1− γ2)

128Eh1

< 1.

be fulfilled. Then there exists a solution w ∈
◦
W 1

2(0, l) ∩W 2
2 (0, l) of problem (7),(8).

An approximate solution of problem (7),(8) can be found by the Bubnov-Galerkin
method. The sequence of approximate solutions converges in a weak sense to w.

Proof. In proving the theorem, the following notation is used: En is the Euclidean
space of n-dimensional vectors with a scalar product denoted by (·, ·)0, (·, ·) is a scalar
product in L2(0, l), | · |C is a norm in the space C(0, l). We define

|v| ◦
W 1

2

=

(∫ l

0

(v′)2dx

) 1
2

, |v| ◦
W 1

2∩W 2
2

=

(∫ l

0

(v′′)2dx

) 1
2

.

For brevity, these norms will be denoted by | · |1 and | · |2, respectively.
Let us rewrite equation (7) in the operator form

Φ(w) = 0,

where

Φ(w) =

[
γ0 + γ1

∫ l

0

(w′(ξ))2dξ + γ(x,w)

]
w′′ + α2γ(x,w) + q,

γ0 = (h1 + h2)G, γ1 =
Eh1

(1− ν2)l
,

γ(x,w) = γ0w − γ2

{
sinh[α(l − x)]

∫ x

0

w(ξ) sinh(αξ) dξ

+ sinh(αx)

∫ l

x

w(ξ) sinh[α(l − ξ)] dξ

}
, γ2 =

αγ0
sinh(αl)

.

A function w ∈
◦
W 1

2(0, l) ∩W 2
2 (0, l) that satisfies the equality

(Φ(w), φ) = 0 ∀φ ∈
◦
W 1

2(0, l) ∩W 1
2 (0, l).

is called a generalized solution of problem (7),(8).
A solution of problem (7),(8) is sought by the Bubnov-Galerkin method. We con-

struct the sequence of approximations {wn}, n = 1, 2, . . . , of the form

wn =
n∑

i=1

wni
νi, νi = sin

iπx

l
,
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where the coefficients wni
are defined from the finite system

(Φ(wn), νi) ≡ ([γ0 + γ1|wn|21 + γ(x,wn)]w
′
n, ν

′
i)

+ (γ′
x(x,wn) · w′

n − α2γ(x,wn)− q, νi) = 0. (9)

We prove that system (9) is solvable and derive the estimate |wn|2 ≤ const.
The obtained a priori estimate allows us to perform passage to the limit, and thereby

to complete the proof of the theorem.
Using w found by means of (3) and (6), we can construct u and β.
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