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Abstract. One three-dimensional system of nonlinear partial differential equations is con-

sidered. Some properties of solution is given. Difference scheme of variable directions is

constructed.
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In the cylinder Ω̄× [0, T ] consider the following nonlinear system:
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with initial and boundary conditions

U(x, 0) = U0(x), Vα(x, 0) = Vα 0(x), α = 1, 2, 3, x ∈ Ω̄, (3)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ] . (4)

Here Ω = {x = (x1, x2, x3) : 0 < x1 < 1, 0 < x2 < 1, 0 < x3 < 1}, ∂Ω is the boundary
of the domain Ω, T is some fixed positive number, U0, Vα 0, gα are given sufficiently
smooth functions, such that:

Vα0(x) ≥ δ0, x ∈ Ω̄, (5)

γ0 ≤ gα (ξα) ≤ G0, |g′α(ξα)| ≤ G1, ξα ∈ R, α = 1, 2, 3, (6)

where δ0, γ0, G0, G1 are some positive constants.
In two-dimensional case (1), (2) system describes the vein formation in meristematic

tissues of young leaves [1]. In [1], [2] some qualitative and structural properties of
the solutions of the initial-boundary value problems for the (1), (2) type system are
established. In [2] investigations are carried out for one-dimensional analog of the
(1), (2). Many scientific works are devoted to construction of numerical resolution
algorithms for (1), (2) type models [3]-[13].

Naturally arises the question of constructing the economical algorithms for solution
of multi-dimensional problem (see, for example, [14] and references therein).
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In the present work, based on work [15], one kind of such algorithm for problem
(1)-(6) is given. Analogical investigations for (1), (2) type systems are carried out in
[6]-[9], [11], [12]. In [3] average model of sum approximation is studied as well.

Suppose that all necessary consistence conditions are satisfied and there exists the
sufficiently smooth solution of the problem (1)-(4).

Under the conditions (5), (6) from (2)-(4) we have

Vα(x, t) = e−tVα0(x) + e−t

t∫
0
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dτ ≥ e−tδ0

+e−t

t∫
0

eτγ0dτ = σ0 = const > 0, (x, t) ∈ Q̄ = Ω̄× [0, T ] , α = 1, 2, 3.

(7)

Analogically we prove the upper boundedness of the functions Vα(x, t)

Vα(x, t) ≤ ∆0 = const, (x, t) ∈ Q̄ (8)

and at last using (2), (8) – the estimations∣∣∣∣∂Vα∂t
∣∣∣∣ ≤ C, α = 1, 2, 3, (x, t) ∈ Q̄. (9)

Here C is a positive constant.
Later we shall follow known notations:

ω̄h = {xi1i2i3 = (i1h1, i2h2, i3h3) , iβ = 0, ..., Nβ, Nβhβ = 1, β = 1, 2, 3} ,
ω̄2h = {xi1i2i3 = (i1h1, (i2 − 1/2)h2, i3h3) , i1 = 0, ..., N1, i2 = 1, ..., N2, i3 = 0, ..., N3} ,
ω̄3h = {xi1i2i3 = (i1h1, i2h2, (i3 − 1/2)h3) , i1 = 0, ..., N1, i2 = 0, ..., N2, i3 = 1, ..., N3} ,
ω̄1h = {xi1i2i3 = ((i1 − 1/2)h1, i2h2, i3h3) , i1 = 1, ..., N1, i2 = 0, ..., N2, i3 = 0, ..., N3} ,
ωh = Ω ∩ ω̄h, γh = ω̄h\ωh, ω̄h = ωh ∪ γh, ωτ = {tj = jτ, j = 0, ..., j∗, j∗τ = T} ,

ω̄hτ = ω̄h × ωτ , ω̄αhτ = ω̄αh × ωτ , α = 1, 2, 3.

Here hα is the space step in direction xα and τ is the time step on the interval [0, T ].
Define the following inner products and the norms for the discrete functions y and

z given on ω̄h:
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The corresponding inner products and the norms on ω̄αh can be defined in a similar
way. Introduce also the following known notations:

y = yji1i2i3 = y (xi1i2i3 , tj) , ŷ = yj+1
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.
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The difference quotients for the discrete functions yx̄2 , yx2 , yx̄3 , yx3 , yx̄2x2 , yx̄3x3 and for
the discrete functions given on ω̄αhτ are defined similarly.

Let us correspond to the problem (1)-(4) the following variable directions type
difference scheme:

u1t = (v̂βû1x̄1)x1
+ (v2u2x̄2)x2

+ (v3u3x̄3)x3
, (10)

u2t = (v̂1û1x̄1)x1
+ (v̂2û2x̄2)x2

+ (v3u3x̄3)x3
, (11)

u3t = (v̂1û1x̄1)x1
+ (v̂2û2x̄2)x2

+ (v̂3û3x̄3)x3
, (12)

vαt = −v̂α + gα (vαuαx̄α) , (13)

uα(x, 0) = U0(x), x ∈ ω̄h, (14)

vα(x, 0) = vα 0(x), x ∈ ω̄1h, (15)

uα(x, t) = 0, (x, t) ∈ γh × ωτ , α = 1, 2, 3. (16)

In (10)-(12) the discrete functions uα are defined on ω̄hτ and vα – on ω̄αhτ respectively.
For the exact solution U, V1, V2, V3 of the problem (1)-(4) we have:

Ut =
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+ φ1,

Ut =
(
V̂1Û1x̄1
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)
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+ φ3,

Vαt = −V̂α + gα (VαUαx̄α) + ψα,
U(x, 0) = U0(x), x ∈ ω̄h, Vα(x, 0) = Vα 0(x), x ∈ ω̄αh, α = 1, 2, 3,

U(x, t) = 0, (x, t) ∈ γh × ωτ .

It is clear that each of the difference equations (10) - (13) approximate the cor-
responding differential equations (1), (2). Under the sufficient smoothness of the ex-
act solution U, V1, V2, V3 the approximate errors φα and ψα are the values of order
O (τ + h21 + h22 + h23) and O (τ + h2α) respectively.

The theorems of absolute stability and convergence of (10)-(16) type variable direc-
tion scheme are shown in [4]. According to [3] the averaged model of sum approximation
are constructed as well. The test numerical experiments are carried out by using these
schemes. Comparative analysis of numerical results is carried out.
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