Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

SOME PROPERTIES OF SOLUTION AND VARIABLE DIRECTIONS DIFFERENCE SCHEME FOR ONE SYSTEM OF NONLINEAR THREE-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

Nikolishvili M., Tabatadze B.

Abstract. One three-dimensional system of nonlinear partial differential equations is considered. Some properties of solution is given. Difference scheme of variable directions is constructed.

Keywords and phrases: Three-dimensional system, nonlinear partial differential equations, difference scheme of variable directions, stability.

AMS subject classification: 35Q92, 65M06, 65M12, 92B05.

In the cylinder $\overline{\Omega} \times [0, T]$ consider the following nonlinear system:

$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial x_1} \left(V_1 \frac{\partial U}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(V_2 \frac{\partial U}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(V_3 \frac{\partial U}{\partial x_3} \right), \tag{1}$$

$$\frac{\partial V_{\alpha}}{\partial t} = -V_{\alpha} + g_{\alpha} \left(V_{\alpha} \frac{\partial U}{\partial x_{\alpha}} \right), \qquad (2)$$

with initial and boundary conditions

$$U(x,0) = U_0(x), \quad V_{\alpha}(x,0) = V_{\alpha 0}(x), \quad \alpha = 1, 2, 3, \quad x \in \bar{\Omega},$$
(3)

$$U(x,t) = 0, \quad (x,t) \in \partial\Omega \times [0,T].$$
(4)

Here $\Omega = \{x = (x_1, x_2, x_3): 0 < x_1 < 1, 0 < x_2 < 1, 0 < x_3 < 1\}, \partial\Omega$ is the boundary of the domain Ω , T is some fixed positive number, U_0 , $V_{\alpha 0}$, g_{α} are given sufficiently smooth functions, such that:

$$V_{\alpha 0}(x) \ge \delta_0, \quad x \in \bar{\Omega},\tag{5}$$

$$\gamma_0 \le g_\alpha(\xi_\alpha) \le G_0, \quad |g'_\alpha(\xi_\alpha)| \le G_1, \quad \xi_\alpha \in R, \quad \alpha = 1, 2, 3, \tag{6}$$

where δ_0 , γ_0 , G_0 , G_1 are some positive constants.

In two-dimensional case (1), (2) system describes the vein formation in meristematic tissues of young leaves [1]. In [1], [2] some qualitative and structural properties of the solutions of the initial-boundary value problems for the (1), (2) type system are established. In [2] investigations are carried out for one-dimensional analog of the (1), (2). Many scientific works are devoted to construction of numerical resolution algorithms for (1), (2) type models [3]-[13].

Naturally arises the question of constructing the economical algorithms for solution of multi-dimensional problem (see, for example, [14] and references therein).

In the present work, based on work [15], one kind of such algorithm for problem (1)-(6) is given. Analogical investigations for (1), (2) type systems are carried out in [6]-[9], [11], [12]. In [3] average model of sum approximation is studied as well.

Suppose that all necessary consistence conditions are satisfied and there exists the sufficiently smooth solution of the problem (1)-(4).

Under the conditions (5), (6) from (2)-(4) we have

$$V_{\alpha}(x,t) = e^{-t}V_{\alpha0}(x) + e^{-t}\int_{0}^{t} e^{\tau}g_{\alpha}\left(V_{\alpha}\frac{\partial U}{\partial x_{\alpha}}\right)d\tau \ge e^{-t}\delta_{0}$$

$$+e^{-t}\int_{0}^{t} e^{\tau}\gamma_{0}d\tau = \sigma_{0} = const > 0, \quad (x,t) \in \bar{Q} = \bar{\Omega} \times [0,T], \quad \alpha = 1,2,3.$$

$$(7)$$

Analogically we prove the upper boundedness of the functions $V_{\alpha}(x,t)$

$$V_{\alpha}(x,t) \le \Delta_0 = const, \quad (x,t) \in \bar{Q}$$
(8)

and at last using (2), (8) – the estimations

$$\left|\frac{\partial V_{\alpha}}{\partial t}\right| \le C, \quad \alpha = 1, 2, 3, \quad (x, t) \in \bar{Q}.$$
(9)

~

Here C is a positive constant.

Later we shall follow known notations:

$$\begin{split} \bar{\omega}_h &= \left\{ x_{i_1 i_2 i_3} = (i_1 h_1, i_2 h_2, i_3 h_3), \quad i_\beta = 0, \dots, N_\beta, \quad N_\beta h_\beta = 1, \quad \beta = 1, 2, 3 \right\}, \\ \bar{\omega}_{2h} &= \left\{ x_{i_1 i_2 i_3} = (i_1 h_1, (i_2 - 1/2) h_2, i_3 h_3), i_1 = 0, \dots, N_1, i_2 = 1, \dots, N_2, i_3 = 0, \dots, N_3 \right\}, \\ \bar{\omega}_{3h} &= \left\{ x_{i_1 i_2 i_3} = (i_1 h_1, i_2 h_2, (i_3 - 1/2) h_3), i_1 = 0, \dots, N_1, i_2 = 0, \dots, N_2, i_3 = 1, \dots, N_3 \right\}, \\ \bar{\omega}_{1h} &= \left\{ x_{i_1 i_2 i_3} = ((i_1 - 1/2) h_1, i_2 h_2, i_3 h_3), i_1 = 1, \dots, N_1, i_2 = 0, \dots, N_2, i_3 = 0, \dots, N_3 \right\}, \\ \omega_h &= \Omega \cap \bar{\omega}_h, \quad \gamma_h = \bar{\omega}_h \backslash \omega_h, \quad \bar{\omega}_h = \omega_h \cup \gamma_h, \omega_\tau = \left\{ t_j = j\tau, \quad j = 0, \dots, j^*, \quad j^*\tau = T \right\}, \\ \bar{\omega}_{h\tau} &= \bar{\omega}_h \times \omega_\tau, \quad \bar{\omega}_{\alpha h\tau} = \bar{\omega}_{\alpha h} \times \omega_\tau, \quad \alpha = 1, 2, 3. \end{split}$$

Here h_{α} is the space step in direction x_{α} and τ is the time step on the interval [0, T].

Define the following inner products and the norms for the discrete functions y and z given on $\bar{\omega}_h$:

$$(y,z]_{1} = \sum_{i_{1}=1}^{N_{1}} \sum_{i_{2}=1}^{N_{2}-1} \sum_{i_{3}=1}^{N_{3}-1} y_{i_{1}i_{2}i_{3}} z_{i_{1}i_{2}i_{3}} h_{1}h_{2}h_{3}, \quad (y,z]_{2} = \sum_{i_{1}=1}^{N_{1}-1} \sum_{i_{2}=1}^{N_{2}} \sum_{i_{3}=1}^{N_{3}-1} y_{i_{1}i_{2}i_{3}} z_{i_{1}i_{2}i_{3}} h_{1}h_{2}h_{3}, \quad (y,z]_{2} = \sum_{i_{1}=1}^{N_{1}-1} \sum_{i_{2}=1}^{N_{2}} \sum_{i_{3}=1}^{N_{3}-1} y_{i_{1}i_{2}i_{3}} z_{i_{1}i_{2}i_{3}} h_{1}h_{2}h_{3}, \quad (y,z]_{3} = \sum_{i_{1}=1}^{N_{1}-1} \sum_{i_{2}=1}^{N_{3}} \sum_{i_{3}=1}^{N_{3}} y_{i_{1}i_{2}i_{3}} z_{i_{1}i_{2}i_{3}} h_{1}h_{2}h_{3}, \quad \|y\|_{\alpha} = (y,y]_{\alpha}^{1/2}, \quad \alpha = 1, 2, 3.$$

The corresponding inner products and the norms on $\bar{\omega}_{\alpha h}$ can be defined in a similar way. Introduce also the following known notations:

$$y = y_{i_1 i_2 i_3}^j = y \left(x_{i_1 i_2 i_3}, t_j \right), \quad \hat{y} = y_{i_1 i_2 i_3}^{j+1} = y \left(x_{i_1 i_2 i_3}, t_{j+1} \right), \quad y_t = \frac{y - y}{\tau},$$
$$y_{\bar{x}_1} = \frac{y_{i_1 i_2 i_3}^j - y_{i_1 - 1, i_2 i_3}^j}{h_1} \quad y_{x_1} = \frac{y_{i_1 + 1, i_2 i_3}^j - y_{i_1 i_2 i_3}^j}{h_1},$$
$$y_{\bar{x}_1 x_1} = \frac{y_{i_1 + 1, i_2 \dots i_3}^j - 2y_{i_1 i_2 i_3}^j + y_{i_1 - 1, i_2 i_3}^j}{h_1^2}.$$

The difference quotients for the discrete functions $y_{\bar{x}_2}$, y_{x_2} , $y_{\bar{x}_3}$, y_{x_3} , $y_{\bar{x}_2x_2}$, $y_{\bar{x}_3x_3}$ and for the discrete functions given on $\bar{\omega}_{\alpha h\tau}$ are defined similarly.

Let us correspond to the problem (1)-(4) the following variable directions type difference scheme:

$$u_{1t} = \left(\hat{v}_{\beta}\hat{u}_{1\bar{x}_{1}}\right)_{x_{1}} + \left(v_{2}u_{2\bar{x}_{2}}\right)_{x_{2}} + \left(v_{3}u_{3\bar{x}_{3}}\right)_{x_{3}},\tag{10}$$

$$u_{2t} = (\hat{v}_1 \hat{u}_{1\bar{x}_1})_{x_1} + (\hat{v}_2 \hat{u}_{2\bar{x}_2})_{x_2} + (v_3 u_{3\bar{x}_3})_{x_3}, \qquad (11)$$

$$u_{3t} = (\hat{v}_1 \hat{u}_{1\bar{x}_1})_{x_1} + (\hat{v}_2 \hat{u}_{2\bar{x}_2})_{x_2} + (\hat{v}_3 \hat{u}_{3\bar{x}_3})_{x_3}, \qquad (12)$$

$$v_{\alpha t} = -\hat{v}_{\alpha} + g_{\alpha} \left(v_{\alpha} u_{\alpha \bar{x}_{\alpha}} \right), \tag{13}$$

$$u_{\alpha}(x,0) = U_0(x), \quad x \in \bar{\omega}_h, \tag{14}$$

$$v_{\alpha}(x,0) = v_{\alpha 0}(x), \quad x \in \bar{\omega}_{1h}, \tag{15}$$

$$u_{\alpha}(x,t) = 0, \quad (x,t) \in \gamma_h \times \omega_{\tau}, \quad \alpha = 1, 2, 3.$$
(16)

In (10)-(12) the discrete functions u_{α} are defined on $\bar{\omega}_{h\tau}$ and v_{α} – on $\bar{\omega}_{\alpha h\tau}$ respectively. For the exact solution U, V_1, V_2, V_3 of the problem (1)-(4) we have:

$$U_{t} = \left(\hat{V}_{\beta}\hat{U}_{1\bar{x}_{1}}\right)_{x_{1}} + \left(V_{2}U_{2\bar{x}_{2}}\right)_{x_{2}} + \left(V_{3}U_{3\bar{x}_{3}}\right)_{x_{3}} + \varphi_{1},$$

$$U_{t} = \left(\hat{V}_{1}\hat{U}_{1\bar{x}_{1}}\right)_{x_{1}} + \left(\hat{V}_{2}\hat{U}_{2\bar{x}_{2}}\right)_{x_{2}} + \left(V_{3}U_{3\bar{x}_{3}}\right)_{x_{3}} + \varphi_{2},$$

$$U_{t} = \left(\hat{V}_{1}\hat{U}_{1\bar{x}_{1}}\right)_{x_{1}} + \left(\hat{V}_{2}\hat{U}_{2\bar{x}_{2}}\right)_{x_{2}} + \left(\hat{V}_{3}\hat{U}_{3\bar{x}_{3}}\right)_{x_{3}} + \varphi_{3},$$

$$V_{\alpha t} = -\hat{V}_{\alpha} + g_{\alpha}\left(V_{\alpha}U_{\alpha\bar{x}_{\alpha}}\right) + \psi_{\alpha},$$

$$U(x, 0) = U_{0}(x), \quad x \in \bar{\omega}_{h}, \quad V_{\alpha}(x, 0) = V_{\alpha 0}(x), \quad x \in \bar{\omega}_{\alpha h}, \quad \alpha = 1, 2, 3,$$

$$U(x, t) = 0, \quad (x, t) \in \gamma_{h} \times \omega_{\tau}.$$

It is clear that each of the difference equations (10) - (13) approximate the corresponding differential equations (1), (2). Under the sufficient smoothness of the exact solution U, V_1, V_2, V_3 the approximate errors φ_{α} and ψ_{α} are the values of order $O(\tau + h_1^2 + h_2^2 + h_3^2)$ and $O(\tau + h_{\alpha}^2)$ respectively.

The theorems of absolute stability and convergence of (10)-(16) type variable direction scheme are shown in [4]. According to [3] the averaged model of sum approximation are constructed as well. The test numerical experiments are carried out by using these schemes. Comparative analysis of numerical results is carried out.

REFERENCES

1. Mitchison G.J. A model for vein formation in higher plants. Proc. R. Soc. Lond. B., 207, 1166 (1980), 79-109.

2. Bell J., Cosner C., Bertiger W. Solutions for a flux-dependent diffusion model. *SIAM J. Math. Anal.*, **13**, 5 (1982), 758-769.

3. Dzhangveladze T.A. Averaged model of sum approximation for a system of nonlinear partial differential equations. (Russian) *Proc. I. Vekua Inst. Appl. Math.*, **19**, (1987) 60-73.

4. Dzhangveladze T.A., Tagvarelia T.G. Convergence of a difference scheme for a system of nonlinear partial differential equations, that arise in biology. (Russian) *Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy (Proc. I. Vekua Inst. Appl. Math.)*, **40**, (1990), 77-83.

5. Jangveladze T.A. Investigation and numerical solution of some systems of nonlinear partial differential equations. *Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math.*, **6**, 1 (1991), 25-28.

6. Jangveladze T.A. The difference scheme of the type of variable directions for one system of nonlinear partial differential equations. *Proc. I. Vekua Inst. Appl. Math.*, **42**, (1992), 45-66.

7. Jangveladze T., Tagvarelia T. The difference scheme of the type of variable directions for one system of nonlinear partial differential equations, arising in biology. *Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math.*, **8**, 3 (1993), 74-75.

8. Jangveladze T., Kiguradze Z., Nikolishvili M. On investigation and numerical solution of one nonlinear biological model. *Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math.*, **22**, (2008), 46-50.

9. Jangveladze T., Kiguradze Z., Nikolishvili M. On approximate solution of one nonlinear twodimensional diffusion system. *Rep. Enlarged Sess. Sem. of I. Vekua Inst. Appl. Math.*, **23**, (2009), 42-45.

10. Nikolishvili M. Numerical resolution of one nonlinear partial differential system. *Rep. Enlarged Sess. Semin. I. Vekua Appl. Math.*, **24**, (2010), 93-96.

11. Jangveladze T., Nikolishvili M., Tabatadze B. On one nonlinear two-dimensional diffusion system. *Proceedings of the 15th WSEAS Int. Conf. Applied Math.(MATH 10)*, (2010), 105-108.

12. Kiguradze Z., Nikolishvili M., Tabatadze B. Numerical resolution of one system of nonlinear partial differential equations. *Rep. Enlarged Sess. Semin. I. Vekua Appl. Math.*, **25**, (2011), 76-79.

13. Nikolishvili M. Finite difference scheme and stability of the stationary solution for one system of nonlinear partial differential equations. *Rep. Enlarged Sess. Sem. of I. Vekua Inst. Appl. Math.*, **26**, (2012), 46-49.

14. Janenko N.N. The Method of Fractional Steps for Multi-dimensional Problems of Mathematical Physics. (Russian) *Nauka, Moscow*, 1967.

15. Abrashin V.N. A variant of the method of variable directions for the solution of multidimensional problems in mathematical physics. I. (Russian) *Diff. Uravn.*, **26**, (1990), 314-323. English translation: *Diff. Equ.*, **26**, (1990) 243-250.

Received 27.04.2014; revised 25.06.2014; accepted 27.09.2014

Authors' addresses:

M. Nikolishvili Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: maianikolishvili@yahoo.com

B. Tabatadze
Sokhumi State University
9, Politkovskaia St., Tbilisi 0186
Georgia
E-mail: besotabatadze84@gmail.com