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ON THE 2-D NONLINEAR SYSTEMS OF EQUATIONS
FOR NON-SHALLOW SHELLS
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Abstract. I. Vekua has constructed several versions of the refined theory of thin and shallow

shells. Using the reduction methods of I. Vekua, the 2-D system of equations for geometrically

and physically nonlinear theory of non-shallow shells is obtained.
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A complete system of equilibrium equation and the stress-strain relations of the
3-D geometrically and physically nonlinear theory can be written as:

∇̂iτ
i +Φ=0, τ i=(Eijpq + Eijpqkseks)epq(Rj + ∂jU ), (i, j, p, q, k, s = 1, 2, 3) (1)

where ∇̂i are covariant derivatives with respect to the space curvilinear coordinates
xi, τ i and Φ are the contravariant ”constituents” of the stress vector and an external
force, eij are covariant components of the strain tensor, U is the displacement vector:

2eij = Ri∂jU +Rj∂iU + ∂iU∂jU , (Ri = ∂iR) (2)

Eijpq = λgijgpq + µ(gipgjq + giqgjp), (gij = RiRj),

Eijpqks = E1g
ijgpqgks + E2g

ijgpkgqs + E3g
ikgpqgjs + E4g

ipgjqgks,
(3)

where λ and µ are Lame’s constants, E1, E2, E3, E4 are modules elasticity of the second
order for isotropic elastic bodies, Ri and Ri are covariant and contravariant bases
vectors of the surfaces Ŝ(x3 = const), which are ”normally connected” with the basic
vectors ri and ri of the midsurfaces S(x3 = 0) by the following relations:

R(x1, x2, x3) = r(x1, x2) + x3n(x1, x2), (−h ≤ x3 = x3 ≤ h)

h is the thickness of a shell. Further

∂αR = Rα = A.β
α.rβ, Rα = Aα.

.βr
β, R3 = R3 = n, ∂αr = rα, (α, β = 1, 2)

rαr
β = RαR

β = δβα, A.β
α. = aβα − x3bβα, Λα.

.β = ϑ−1[aαβ + x3(b
α
β − 2Haαβ)],

aαβ = rαrβ, bαβ = −nαrβ, ϑ = 1− 2Hx3 +Kx2
3,

2H = b11 + b22, K = b11b
2
2 − b21b

1
2.

(4)

Note that sometimes under non-shallow shells the following approximation equali-
ties

Rα ∼= (aαβ + x3b
α
β)r

β, (W. Koiter, P. Naghdi, A. Lurie, ...) (5)
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are meant, which are the first approximations of the general case (4).
The relations (1-3) can be written as:

∇α(ϑτ
α) + ∂3(ϑτ

3) + ϑΦ = 0, (6)

σi = ϑτ i = ϑ
2
Ai

i1
[Ei1j1p1q1 + 1

2
Ei1j1p1q1k1s1(Ak

k1
rs1∂kU + As

s1
rk1∂sU

+Ak
k1
As

s1
∂kU∂sU )](Ap

p1
rq1∂pU + Aq

q1
rq1∂qU + Ap

p1
Aq

q1
∂pU∂qU)(rj1 + Aj

j1
∂jU)

(7)

where

Ei1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1), (ai1j1 = ri1rj1) (8)

Ei1j1p1q1k1s1 = ai1j1(E1a
p1q1ak1s1 + E2a

p1k1aq1s1) + E3a
i1k1ap1q1aj1s1 + E4a

i1p1aj1q1ak1s1 .

Now we use I. Vekua’s reduction method the essence of which consists, without

going into details, in the following: since the system of Legendre polynomials Pm

(
x3

h

)
are complete in the interval [−h, h], for equation (6) the equivalent infinite system of
2-D equations is obtained:

∇α

(m)
σ α − 2m+ 1

h

(
(m−1)
σ 3 +

(m−3)
σ 3 + ...

)
+

(m)

F = 0, (α = 1, 2; m = 0, 1, ...) (9)

where ∇α are covariant derivatives on the midsurface S(x3 = 0).
Further (

(m)
σ i,

(m)

U ,
(m)

Φ

)
=
2m+ 1

2h

h∫
−h

(
ϑτ i,U , ϑΦ

)
Pm

(x3

h

)
dx3, (10)

where
(m)

F =
(m)

Φ+
2m+ 1

2h

(
(+)

ϑ
(+)
σ 3−(−1)m

(−)

ϑ
(−)
σ 3

)
,

(±)

ϑ = 1∓ 2hH +Kh2,
(±)
σ 3 = σ3(x1, x2,±h).

For
(m)
σ i we have

(m)
σ i=

1

2
Ei1j1p1q1

∞∑
m1=0

[ (m)

A
(m1)

i p
i1p1

(
rq1Dp

(m1)

U
)
rj1+

∞∑
m2=0

( (m)

A
(m1,m2)

i pq
i1p1q1

(
Dp

(m1)

U Dq

(m2)

U
)
rj1

+ · · ·+
∑
m3=0

(m)

A
(m1,m2,m3)

i j p q
i1j1p1q1

(
Dp

(m1)

UDq

(m2)

U
)
Dj

(m3)

U
)]

+ · · ·+

+
1

4

∑
m1,...m5

Ei1j1p1q1k1s1
(m)

A
(m1,m2,m3)

i j p q ks
i1j1p1q1k1s1

(
Dp

(m1)

UDq

(m2)

U
)(

Dk

(m3)

UDs

(m4)

U
)
Dj

(m5)

U ,

(11)

where Di

(m)

U = δβi ∂β
(m)

U +δ3i
(m)

U ′;
(m)

U ′ =
2m+ 1

h

(
(m+1)

U +
(m+3)

U +...

)
,

(m)

A
(m1)

ij
i1j1

=
2m+ 1

2h

h∫
−h

ϑAi
i1
Aj

j1
Pm1Pmdx3, · · · . (12)
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Now me have the following integrals:
a) For the shallow shells

h∫
−h

PsPmdx3,

h∫
−h

Ps1Ps2Pmdx3,

h∫
−h

Ps1Ps2Ps3Pmdx3.

It should be noted that those integrals can be calculated by means of Adams formulas:

Pm(x)Pn(x) =

min(m,n)∑
r=0

Am−rArAn−r

Am+n−r

2(m+ n)− 4r + 1

2(m+ n)− 2r + 1
Pm+n−2r(x),

Am =
1 · 3 · · · (2m− 1)

m!
.

b) For non-shallow shells (Koiter-Naghdi, Lurie,...) we have the following integrals:

h∫
−h

xk
3Ps1 · · · PsnPmdx3, (k = 0, 1, ..., 6; n = 1, 2, ..., 5).

c) For non-shallow shells (I. Vekua,...) we have integrals of the types

h∫
−h

xk
3Ps1 · · · PsnPm

(1− 2Hx3 +Kx2
3)

n
dx3, (k = 0, 1, ..., 6; n = 1, 2, ..., 5)

which are calculated by means of Adams and Niemann formulas

1∫
−1

Pm(y)dt

x− y
= 2Qm(x), (|x| > 1),

where Qm(x) is the Legender function of the second kind.
For example we have the integrals of type (12) which can be calculated

(m)

A
(m1)

αβ
α1β1

=
Lα
α1
Lβ

β1

K
δmm1

+
2m+ 1

2
√
Eh

[
Bα

α1
(hy)Bβ

β1
(hy)

(
Pm1(y)Qm(y), m1 ≤ m
Qm1(y)Pm(y), m1 ≤ m

)]y2
y1

,

where Bα
β (x) = aαβ + xLα

β , L
α
β = bαβ − 2Haαβ , E = H2 −K, y1,2 = [(H ∓

√
E)h]−1.

Let ρ = max(bαβ , b
αβ, bαβ) ⇒ h < ρ ⇒ h

ρ
= ε < 1 ⇒ |εbαβρ| ≤ q < 1, where ε is a

small parameter, h is the semithickness of a shell.
Now, following Signorini [2], we assume the validity of the expansions for approxi-

mations of order N :(
(m)
σ i,

(m)

U ,
(m)

F

)
=

∞∑
n=1

(
(m,n)
σ i,

(m,n)

U ,
(m,n)

F

)
εn, (m = 0, 1, ..., N).
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Substituting the above expansions into relation (9) we obtain the following 2-D
finite system of equilibrium equations to components of displacement vector of the
isometric coordinates:

4µ∂z̄

(
Λ−1∂z

(m,n)

U +

)
+ 2(λ+ µ)∂z̄

(m,n)

Θ +
2λ

h
∂z̄
(m,n)

U
′
3

−2m+ 1

h
µ
[
2∂z̄

( (m−1,n)

U 3 +
(m−3,n)

U 3 + · · ·
)
+

(m−1,n)

U
′
+ +

(m−3,n)

U
′
+ + · · ·

]
+

(m,n)

F + = 0,

µ
(
∇2

(m,n)

U 3 +
(m,n)

Θ
′
)
− 2m+ 1

h

[
λ
( (m−1,n)

Θ +
(m−3,n)

Θ + · · ·
)

+(λ+ 2µ)
( (m−1,n)

U
′
3 +

(m−3,n)

U
′
3 + · · ·

)]
+

(m,n)

F 3 = 0,

(13)

where ds2 = Λ(z, z̄)dzdz̄,
(
z = x1 + ix2, 2∂z̄ = ∂1 − i∂2, ∇2 =

4

Λ

∂2

∂z∂z̄

)
,

U+ = U1 + iU2, Θ = Λ−1
(
∂zU+ + ∂z̄Ū+

)
.

Note that system (13) can be rewritten as

µ∆
(m)

U+ + 2(λ+ µ)∂z̄
(m)

Θ +
(m)

L+

((0)

Ui, ...,
(N)

U i

)
= 0, (L+ = L1 + iL2), (14)

µ∆
(m)

U3 +
(m)

L3

((0)

Ui, ...,
(N)

U i

)
= 0, (i = 1, 2, 3), m = 0, 1, ..., N, (15)

where the main part of equation (14) is the operator of the plane theory of elasticity

and the main part of equation (15) is the Laplace ∆ = 4
∂2

∂z∂z̄
operator.
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