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1. Renormdynamics. Quantum field theory (QFT) and Fractal calculus provide
Universal language of fundamental physics (see e.g. [6] ). In QFT existence of a given
theory means, that we can control its behavior at some scales by renormalization the-
ory [2]. If the theory exists, then we want to solve it, which means to determine what
happens on other scales. This is the problem (and content) of Renormdynamics. The
result of the Renormdynamics, the solution of its discrete or continual motion equa-
tions, is the effective QFT on a given scale (different from the initial one). Perturbation
theory series have the following qualitative form

f(x) =
∑
n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1− x
, δ = x

d

dx
, (1)

So, we reduce previous series to the standard geometric progression series. This se-
ries is convergent for |x| < 1 or for |x|p = p−k < 1, x = pka/b, k ≥ 1, p =
2, 3, 5, ..., 29, ..., 137, ... With an appropriate nomalization of the expansion parameter,
the coefficients of the series are rational numbers and if experimental data indicates
for some prime value for x, e.g. in QED, x = α = e2/(4π) = 1/137.036..., then we can
take corresponding prime number and consider p-adic convergence of the series. In the
Yukawa theory of strong interactions (see e.g. [1] ), we take x = απN = 13. So, the
series is convergent. If the limit is a rational number, we consider it as an observable
value of the corresponding physical quantity. In MSSM (see [4] ) coupling constants
unify at α−1

u = 26.3± 1.9± 1. So, 23.4 < α−1
u < 29.2.

Question: how many primes are in this interval? (24, 25, 26, 27, 28, 29) Only one!
Proposal: take the value α−1

u = 29.0... which will be two orders of magnitude more
precise prediction and find the consequences for the SM scale observables.

2. Renormdynamics (RD) of QCD. The RD equation for the coupling constant

ȧ = β(a) = β2a
2 + β3a

3 + β4a
4 + β5a

5 + ..., (2)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑
n≥1

fnA
n, (3)

Ȧ = b1A+ b2A
2 + ... =

∑
n≥1

bnA
n, ȧ =

∑
n

βna
n = Ȧf ′(A),
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∑
n

βn(
∑
m

fmA
m)n =

∑
n

bnA
n
∑
m

mfmA
m−1

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,

b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f 2
2 − f3)β1,

b4 = β4 + 3f2β3 + f 2
2β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ... (4)

so, by reparametrization, beyond the critical dimension (β1 ̸= 0) we can change any
coefficient but β1. We can fix any higher coefficient with zero value, bn = 0, n ≥ 2, if
we take f2 = β2/β1, f3 = β3/2β1 + f 2

2 , ... In the critical dimension of the space-time,
β1 = 0 and we can change by reparametrization any coefficient but β2 and β3. From
the relations (4), in the critical dimension (β1 = 0), we find the minimal form of the
RD equation Ȧ = β2A

2 + β3A
3, with the solution as the following implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3
β2
. (5)

Then, as in the noncritical case, explicit solution for a will be given by reparametriza-
tion representation (3) [7]. If we know somehow the coefficients βn, e.g. for first
several exact and for others asymptotic values (see e.g. [5] ) then we can construct
reparametrization function (3) and find the dynamics of the running coupling constant.
This is similar to the action-angular canonical transformation of the analytic mechanics
(see e.g. [3] ). Statement: The reparametrization series for a is p-adically convergent,
when βn and A are rational numbers.

It was noted [8] that parton densities given by the solution of the Altarelli-Parisi
equation with the constituent-valence quark initial condition at a valence quark scale
m and αs(m

2) = 2, gives the experimental values for the moments of parton densities.
We have seen, that for πρN model απρN = 3, and for πN model απN = 13. It is nice
that α2

s + α2
πρN = απN ; to αs = 2 corresponds g =

√
4παs = 5.013 = 5+.

3. Hamiltonization of dynamical systems. Let us consider the following
system of the ordinary differential equations [9]

ẋn = vn(x), 1 ≤ n ≤ N, (6)

Lagrangian,
L = (ẋn − vn(x))ψn (7)

and the corresponding motion equations

ẋn = vn(x), ψ̇n = −∂vm
∂xn

ψm. (8)

The system (8) extends the general system (6) by linear equation for the ψ. The
extended system can be put in the Hamiltonian form [12].

In the Faddeev-Jackiw formalism [11] for the Hamiltonian treatment of systems
defined by first-order Lagrangians,

L = fn(x)ẋn −H(x), (9)



68 Makhaldiani N.

motion equations

fmnẋn =
∂H

∂xm
, (10)

for the regular structure function fmn, can be put in the explicit Hamiltonian form

ẋn = f−1
nm

∂H

∂xm
= {xn, xm}

∂H

∂xm
= {xn, H}, (11)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1
nm, fmn = ∂mfn − ∂nfm. (12)

The system (8) is an important example of the first order regular Hamiltonian systems.
Indeed, in the new variables, y1n = xn, y

2
n = ψn, Lagrangian (7) takes the following first

order form

L = (ẋn − vn(x))ψn ⇒ 1

2
(ẋnψn − ψ̇nxn)− vn(x)ψn

=
1

2
yanε

abẏbn −H(y) = fa
n(y)ẏ

a
n −H(y),

fa
n =

1

2
ybnε

ba, H = vn(y
1)y2n, f

ab
nm =

∂f b
m

∂yan
− ∂fa

n

∂ybm
= εabδnm; (13)

corresponding motion equations and the fundamental Poisson brackets are

ẏan = εabδnm
∂H

∂ybm
= {yan, H}, {yan, ybm} = εabδnm. (14)

Nabu mechanics (NM) [14,16] is a proper generalization of the HM, which makes
the difference between dynamical systems with different numbers of integrals of motion
explicit (see, e.g. [13] ). In Nambu formulation, the Poisson bracket is replaced by the
Nambu bracket with n+ 1, n ≥ 1, slots.

The quasi-classical description of the motion of a relativistic point particle with
spin in accelerators and storage rings includes the equations of orbit motion

ẋn = fn(x), fn(x) = εnm∂mH, εn,n+3 = 1, n = 1, 2, 3; n,m = 1, 2, ..., 6;

H = eΦ + c
√
℘2 +m2c2, xn = qn, xn+3 = pn, ℘n = pn −

e

c
An (15)

and Thomas-BMT equations [15,10] of classical spin motion

ṡn = εnmkΩmsk = {H1, H2, sn}, H1 = Ω · s, H2 = s2,

{A,B,C} = εnmk∂nA∂mB∂kC,

Ωn =
−e
mγc

((1 + kγ)Bn − k
(B · ℘)℘n

m2c2(1 + γ)
+

1 + k(1 + γ)

mc(1 + γ)
εnmkEm℘k), (16)

where, parameters e and m are the charge and the rest mass of the particle, c is the
velocity of light, k = (g− 2)/2 quantifies the anomalous spin g factor, γ is the Lorentz
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factor, pn are components of the kinetic momentum vector, En and Bn are the electric
and magnetic fields. We put the spin motion equations in the Nambu-Poisson form.
The general method of Hamiltonization of the dynamical systems are also used in the
spinning particle case. We conceder unified configuration space q = (x, p, s), xn =
qn, pn = qn+3, sn = qn+6, n = 1, 2, 3; extended phase space, (qn, ψn); Hamiltonian and
motion equations

H = H(q, ψ) = vnψn, n = 1, 2, ...9; q̇n = vn(q), ψ̇n = −∂vm
∂qn

ψm, (17)

where vn depends on external fields as control parameters which can be determined
according to the optimal control criterion.
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