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SEMI-DISCRETE SCHEME FOR ONE SYSTEM OF NONLINEAR
INTEGRO-DIFFERENTIAL EQUATIONS WITH SOURCE TERMS
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Abstract. One system of nonlinear integro-differential equations with source terms is con-

sidered. The model is based on the well known Maxwell system. Semi-discrete difference

scheme is studied.
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One nonlinear integro-differential model arising on mathematical simulation of the
process of penetration of a magnetic field into a substance [1] is considered. This
model were introduced after reduction of nonlinear Maxwell’s differential system [2] to
the integro-differential form. One-dimensional simple analog with source terms has the
following form:
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where 0 < p ≤ 1, q ≥ 2.
Many works are dedicated to the investigation and numerical resolution of the

integro-differential (1) type models described in [1]. Especially, in [1], [3]-[9] solvability
and uniqueness of the initial-boundary value problems for these type equations and
systems are studied. Asymptotic behavior of solutions as t → ∞ is investigated in many
works also (see, for example, [7]-[18] and references there in). Numerical resolution by
finite difference scheme is given in works [9], [13]-[15], [18]-[20] and in a number of other
works as well.

The aim of this note is to construct and study semi-discrete scheme for the system
(1).

In the [0, 1] × [0, T ), where T is positive number, let us consider the following
initial-boundary value problem for system (1):

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0,

U(x, 0) = U0(x), V (x, 0) = V0(x),
(2)



Semi-discrete Scheme for One System of Nonlinear Integro-Differential ... 63

where U0 = U0(x) and V0 = V0(x) are given functions.
On [0,1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M ,

with h = 1/M . The boundaries are specified by i = 0 and i = M . The semi-discrete
approximation at (xi, t) is designed by ui = ui(t) and vi = vi(t). The exact solution
to the problem at (xi, t) is denoted by Ui = Ui(t) and Vi = Vi(t). At points i =
1, 2, . . . ,M − 1, the integro-differential equation will be replaced by approximation of
the space derivatives by a forward and backward differences. We will use the following
known notations:

rx,i(t) =
ri+1(t)− ri(t)

h
, rx̄,i(t) =

ri(t)− ri−1(t)

h
.

Using usual methods of construction of discrete analogs (see, for example, [21]) let
us construct the following semi-discrete scheme for problem (1),(2):
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u0(t) = uM(t) = v0(t) = vM(t) = 0, (4)

ui(0) = U0,i, vi(0) = U0,i, i = 0, 1, . . . ,M. (5)

It is not difficult to show validity of the following estimations for solution of (3)-(5)
problem:
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where, here and below, C denotes a positive constant which does not depend on h and
the norms ∥·∥ and ∥·]| are defined as follows:
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The a priori estimate (6) guarantee the stability of the scheme (3) and global
solvability of the problem (3) - (5).

The following statement takes place.
Theorem. If 0 < p ≤ 1, q ≥ 2 and the initial-boundary value problem (1),(2)

has the sufficiently smooth solution U = U(x, t), V = V (x, t), then the semi-discrete
scheme (3)-(5) converges and the following estimate is true∥∥uj − U j

∥∥+ ∥∥vj − V j
∥∥ ≤ Ch.
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Note that for solving the finite difference scheme corresponding to (3)-(5) we use
an algorithm analogical to [19]. So, it is necessary to use Newton iterative process [22].
According to this method the great numbers of numerical experiments are carried out.
These experiments agree with the theoretical result given in the Theorem.
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