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Abstract. One nonlinear partial integro-differential equation with source term is considered.

The model arises at describing penetration of a magnetic field into a substance and is based on

the Maxwell system. Large time behavior of solution of the initial-boundary value problem as

well as semi-discrete finite scheme are studied. More wide class of nonlinearity is considered

than one has been already investigated.
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Mathematical simulation of many applied problems leads to nonlinear integro-
differential equations (see, for example, [1]-[9] and reference therein). One kind of
nonlinear partial integro-differential model were introduced in [10] after reduction of
nonlinear Maxwell’s differential system [11]. In [12] some generalizations of such type
integro-differential models are given. One-dimensional simple analog with source term
called by averaged integro-differential model has the following form
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where a = a(S) and f = f(U) are given functions of their arguments.
Many works are dedicated to the investigation and numerical resolution of the

integro-differential models described in [10] and [12]. Especially, in [10], [12]-[17] solv-
ability and uniqueness of the initial-boundary value problems for these type equations
are studied. Asymptotic behavior of solutions as t → ∞ is investigated in many works
also (see, for example, [18]-[23] and references there in). Numerical resolution by finite
difference schemes, Galerkin’s and finite element methods are given in works [18]-[24]
and in a number of other works as well.

The aim of this note is to study asymptotic behavior of solution as t → ∞ and
investigate convergence of corresponding semi-discrete scheme for the equation (1).

In the [0, 1]× [0,∞) let us consider following initial-boundary value problem:

U(0, t) = U(1, t) = 0,
U(x, 0) = U0(x),

(2)

where U0 = U0(x) is given function.
The following statement is true.
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Theorem 1. If a = a(S) ≥ a0 = Const > 0, a
′
(S) ≥ 0, a

′′
(S) ≤ 0, f(U) =

|U |q−2U , q ≥ 2 and U0 ∈ H1
0 (0, 1), then problem (1),(2) has not more than one solution

and the following asymptotic property takes place∥∥∥∥∂U∂x
∥∥∥∥ ≤ C exp

(
−a0t

2

)
.

Here ∥·∥ is norm of the space L2(0, 1), H
1
0 (0, 1) is the usual Sobolev space and C

denotes positive constant independent of t.
On [0,1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M ,

with h = 1/M . The boundaries are specified by i = 0 and i = M . The semi-discrete
approximation at (xi, t) is designed by ui = ui(t). The exact solution to the problem at
(xi, t) is denoted by Ui = Ui(t). At points i = 1, 2, . . . ,M − 1, the integro-differential
equation will be replaced by approximation of the space derivatives by a forward and
backward differences. We will use the following known notations:

ux,i(t) =
ui+1(t)− ui(t)

h
, ux̄,i(t) =

ui(t)− ui−1(t)

h
.

Let us correspond to problem (1),(2) the following semi-discrete scheme:

dui

dt
=

a

h
M∑
i=1

t∫
0

(ux̄,i)
2 dτ

ux̄,i


x

+ |ui|q−2ui,

i = 1, 2, . . . ,M − 1,

(3)

u0(t) = uM(t) = 0, (4)

ui(0) = U0,i, i = 0, 1, . . . ,M. (5)

So, we obtained Cauchy problem (3)-(5) for nonlinear system of ordinary integro-
differential equations.

Introduce usual discrete inner product and norm:

(u, v)h = h
M−1∑
i=1

uivi, ∥u∥h = (u, u)
1/2
h .

The following statement takes place.
Theorem 2. If a = a(S) ≥ a0 = Const > 0, a

′
(S) ≥ 0, a

′′
(S) ≤ 0, f(U) =

|U |q−2U , q ≥ 2 and problem (1),(2) has a sufficiently smooth solution U = U(x, t),
then the solution u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of problem (3)-(5) tends to
U = U(t) = (U1(t), U2(t), . . . , UM−1(t)) as h → 0 and the following estimate is true

∥u(t)− U(t)∥h ≤ Ch.

Here C denotes positive constant independent of h.
Note that for solving the finite difference scheme corresponding to (3)-(5) an algo-

rithm analogical to [20] is used. So, it is necessary to use Newton iterative process [25].
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According to this method the great numbers of numerical experiments are carried out.
These experiments agree with the theoretical results given in the Theorems 1 and 2.
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