Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

ON ONE NONLINEAR AVERAGED INTEGRO-DIFFERENTIAL SYSTEM WITH SOURCE TERMS

Aptsiauri M., Gagoshidze M.

Abstract. One nonlinear averaged integro-differential system with source terms is considered. The model arises on mathematical simulation of the process of penetration of a magnetic field into a substance. Semi-discrete difference scheme is studied.

Keywords and phrases: Nonlinear integro-differential system, semi-discrete difference scheme.

AMS subject classification: 45K05, 65M06.

One type nonlinear integro-differential model arises on mathematical simulation of the process of penetration of a magnetic field into a substance. This model were introduced after reduction of well known nonlinear Maxwell's differential system [1] to the integro-differential form [2]. In [3] some generalization of such type models is given. One-dimensional simple analog called by averaged integro-differential model by author describing the same physical process has the following form:

$$\frac{\partial U}{\partial t} - a \left(\int_{0}^{t} \int_{0}^{1} \left[\left(\frac{\partial U}{\partial x} \right)^{2} + \left(\frac{\partial V}{\partial x} \right)^{2} \right] dx d\tau \right) \frac{\partial^{2} U}{\partial x^{2}} = 0,$$

$$\frac{\partial V}{\partial t} - a \left(\int_{0}^{t} \int_{0}^{1} \left[\left(\frac{\partial U}{\partial x} \right)^{2} + \left(\frac{\partial V}{\partial x} \right)^{2} \right] dx d\tau \right) \frac{\partial^{2} V}{\partial x^{2}} = 0,$$

$$(1)$$

where $a = a(S) \ge a_0 = Const > 0$ is a given function of its argument.

The investigation and numerical resolution of the integro-differential models described in [2] and [3] are given in many works. Especially, in [2]-[9] solvability and uniqueness of the initial-boundary value problems for these type models are studied. At first the investigation of (1) type averaged equations was carried out in [7]. Asymptotic behavior of solutions as $t \to \infty$ is investigated in many works also (see, for example, [7]-[15]). Numerical resolution by finite difference scheme and finite element method is given in works [11]-[13], [16], [17] and in a number of other works as well. To investigation and approximation solution of (1) kind systems are devoted the following works [9]-[15], [17].

The aim of this note is to study approximate solution constructed by semi-discrete difference scheme for one generalization of the system of type (1) by adding monotonic,

power like nonlinear terms. This system has the form:

$$\frac{\partial U}{\partial t} - \left(1 + \int_{0}^{t} \int_{0}^{1} \left[\left(\frac{\partial U}{\partial x}\right)^{2} + \left(\frac{\partial V}{\partial x}\right)^{2} \right] dx d\tau \right)^{p} \frac{\partial^{2} U}{\partial x^{2}} + |U|^{q-2} U = 0,$$

$$\frac{\partial V}{\partial t} - \left(1 + \int_{0}^{t} \int_{0}^{1} \left[\left(\frac{\partial U}{\partial x}\right)^{2} + \left(\frac{\partial V}{\partial x}\right)^{2} \right] dx d\tau \right)^{p} \frac{\partial^{2} V}{\partial x^{2}} + |V|^{q-2} V = 0,$$
(2)

where 0 .

In the $[0,1] \times [0,T]$ let us consider following initial-boundary value problem:

$$U(0,t) = U(1,t) = V(0,t) = V(1,t) = 0,$$

$$U(x,0) = U_0(x), \quad V(x,0) = V_0(x),$$
(3)

where U_0 and V_0 are given functions.

On [0,1] let us introduce a net with mesh points denoted by $x_i = ih, i = 0, 1, ..., M$, with h = 1/M. The boundaries are specified by i = 0 and i = M. The semi-discrete approximation at (x_i, t) is designed by $u_i = u_i(t)$ and $v_i = v_i(t)$. The exact solution to the problem at (x_i, t) is denoted by $U_i = U_i(t)$ and $V_i = V_i(t)$. At points i =1, 2, ..., M - 1, the integro-differential equation will be replaced by approximation of the space derivatives by a forward and backward differences. We will use the following known notations:

$$r_{x,i}(t) = \frac{r_{i+1}(t) - r_i(t)}{h}, \quad r_{\bar{x},i}(t) = \frac{r_i(t) - r_{i-1}(t)}{h}.$$

Using usual methods of construction of discrete analogs (see, for example, [18]) let us construct the following semi-discrete scheme for problem (2),(3):

$$\frac{du_i}{dt} - \left(1 + h \sum_{i=1}^M \int_0^t \left[(u_{\bar{x},i})^2 + (v_{\bar{x},i})^2\right] d\tau\right)^p u_{\bar{x}x,i} + |u_i|^{q-2} u_i = 0,$$

$$\frac{dv_i}{dt} - \left(1 + h \sum_{i=1}^M \int_0^t \left[(u_{\bar{x},i})^2 + (v_{\bar{x},i})^2\right] d\tau\right)^p v_{\bar{x}x,i} + |v_i|^{q-2} v_i = 0,$$

$$i = 1, 2, \dots, M - 1,$$
(4)

$$u_0(t) = u_M(t) = v_0(t) = v_M(t) = 0,$$
(5)

$$u_i(0) = U_{0,i}, \quad v_i(0) = U_{0,i}, \quad i = 0, 1, \dots, M.$$
 (6)

The following statement takes place.

Theorem. If $0 , <math>q \ge 2$ and the initial-boundary value problem (2),(3) has the sufficiently smooth solution U = U(x,t), V = V(x,t), then the semi-discrete scheme (4)-(6) converges and the following estimate is true

$$||u(t) - U(t)|| + ||v(t) - V(t)|| \le Ch.$$

Here $\|\cdot\|$ is a discrete analog of the norm of the space $L_2(0,1)$ and C is a positive constant independent of h.

Note that for solving the corresponding to (4) finite difference scheme we use an algorithm analogical to [12]. So, it is necessary to use Newton iterative process [19]. According to this method the great numbers of numerical experiments are carried out. These experiments agree with the theoretical result.

REFERENCES

1. Landau L., Lifschitz E. Electrodynamics of Continuous Media. (Russian) Moscow, 1958.

2. Gordeziani D.G., Dzhangveladze T.A., Korshia T.K. Existence and uniqueness of the solution of a class of nonlinear parabolic problems. (Russian) *Differ. Uravn.*, **19**, 7 (1983), 1197-1207. English translation: *Differ. Equ.*, **19**, (1984), 887-895.

3. Laptev G.I. Quasilinear Evolution Partial Differential Equations with Operator Coeficients. (Russian) *Doctoral Dissertation. Moscow*, 1990.

4. Dzhangveladze T.A. First boundary-value problem for a nonlinear equation of parabolic type. (Russian) *Dokl. Akad. Nauk SSSR*, **269**, 4 (1983), 839-842. English translation: *Soviet Phys. Dokl.*, **28**, 4 (1983), 323-324.

5. Dzhangveladze T. An Investigation of the First Boundary-Value Problem for Some Nonlinear Parabolic Integrodifferential Equations. (Russian) Tbilisi State University, Tbilisi, 1983.

6. Lin Y., Yin H.M. Nonlinear parabolic equations with nonlinear functionals. J. Math. Anal. Appl., 168, 1 (1992), 28-41.

7. Jangveladze T. On one class of nonlinear integro-differential equations. Semin. I. Vekua Inst. Appl. Math. Rep., 23 (1997), 51-87.

8. Bai Y., Zhang P. On a class of Volterra nonlinear equations of parabolic type. *Appl. Math. Comp.*, **216** (2010), 236-240.

9. Jangveladze T. Investigation and numerical solution of system of nonlinear integro-differential equations associated with the penetration of a magnetic field in a substance. *Proceedings of the 15th WSEAS Int. Conf. Applied Math.(MATH '10)*, (2010), 79-84.

10. Kiguradze Z. The asymptotic behavior of the solutions of one nonlinear integro-differential model. *Semin. I. Vekua Inst. Appl. Math. Rep.*, **30** (2004), 21-32.

11. Jangveladze T.A., Kiguradze Z.V. Large time behavior of solutions and difference schemes to nonlinear integro-differential system associated with the penetration of a magnetic field into a substance. J. Appl. Math. Inform. Mech., 13, 1 (2008), 40-54.

12. Jangveladze T., Kiguradze Z., Neta B. Large time asymptotic and numerical solution of a nonlinear diffusion model with memory. *Comput. Math. Appl.*, **59**, 1 (2010), 254-273.

13. Aptsiauri M. On one averaged integro-differential model. *Rep. Enlarged Sess. Semin. I.Vekua. Appl. Math.*, **25** (2011), 10-13.

14. Aptsiauri M. Asymptotic behavior of the solution of one nonlinear integro-differential model with source term. *Rep. Enlarged Sess. Semin. I.Vekua. Appl. Math.*, **26** (2012), 1-4.

15. Aptsiauri M.M., Jangveladze T.A., Kiguradze Z.V. Asymptotic behavior of the solution of a system of nonlinear integro-differential equations. (Russian) *Differ. Uravn.*, 48, 1 (2012), 70-78. English translation: Differ. Equ., **48**, 1 (2012), 72-80.

16. Jangveladze T.A. Convergence of a difference scheme for a nonlinear integro-differential equation. *Proc. I. Vekua Inst. Appl. Math.*, **48**, (1998) 38-43.

17. Jangveladze T., Kiguradze Z., Neta B., Reich S. Finite element approximations of a nonlinear diffusion model with memory. *Numer. Algorithms*, **64**, 1 (2013), 127-155.

18. Samarskii A.A. The Theory of Difference Schemes. (Russian) Moscow, 1977.

19. Rheinboldt W.C. Methods for Solving Systems of Nonlinear Equations. *SIAM, Philadelphia*, 1970.

Received 27.04.2014; revised 25.06.2014; accepted 27.09.2014

Authors' addresses:

M. Aptsiauri Ilia State University Faculty of Physics and Mathematics 32, Chavchavadze Av., Tbilisi 0179 Georgia E-mail: maiaptsiauri@yahoo.com

M. Gagoshidze Sokhumi State University 9 or 12, Politkovskaya St., Tbilisi 0186 Georgia E-mail: MishaGagoshidze@gmail.com