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Abstract. One nonlinear averaged integro-differential system with source terms is consid-

ered. The model arises on mathematical simulation of the process of penetration of a magnetic

field into a substance. Semi-discrete difference scheme is studied.
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One type nonlinear integro-differential model arises on mathematical simulation
of the process of penetration of a magnetic field into a substance. This model were
introduced after reduction of well known nonlinear Maxwell’s differential system [1] to
the integro-differential form [2]. In [3] some generalization of such type models is given.
One-dimensional simple analog called by averaged integro-differential model by author
describing the same physical process has the following form:
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where a = a(S) ≥ a0 = Const > 0 is a given function of its argument.

The investigation and numerical resolution of the integro-differential models de-
scribed in [2] and [3] are given in many works. Especially, in [2]-[9] solvability and
uniqueness of the initial-boundary value problems for these type models are studied.
At first the investigation of (1) type averaged equations was carried out in [7]. Asymp-
totic behavior of solutions as t → ∞ is investigated in many works also (see, for
example, [7]-[15]). Numerical resolution by finite difference scheme and finite element
method is given in works [11]-[13], [16], [17] and in a number of other works as well. To
investigation and approximation solution of (1) kind systems are devoted the following
works [9]-[15], [17].

The aim of this note is to study approximate solution constructed by semi-discrete
difference scheme for one generalization of the system of type (1) by adding monotonic,
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power like nonlinear terms. This system has the form:
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where 0 < p ≤ 1, q ≥ 2.
In the [0, 1]× [0, T ] let us consider following initial-boundary value problem:

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0,

U(x, 0) = U0(x), V (x, 0) = V0(x),
(3)

where U0 and V0 are given functions.
On [0,1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M ,

with h = 1/M . The boundaries are specified by i = 0 and i = M . The semi-discrete
approximation at (xi, t) is designed by ui = ui(t) and vi = vi(t). The exact solution
to the problem at (xi, t) is denoted by Ui = Ui(t) and Vi = Vi(t). At points i =
1, 2, . . . ,M − 1, the integro-differential equation will be replaced by approximation of
the space derivatives by a forward and backward differences. We will use the following
known notations:

rx,i(t) =
ri+1(t)− ri(t)

h
, rx̄,i(t) =

ri(t)− ri−1(t)

h
.

Using usual methods of construction of discrete analogs (see, for example, [18]) let
us construct the following semi-discrete scheme for problem (2),(3):
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u0(t) = uM(t) = v0(t) = vM(t) = 0, (5)

ui(0) = U0,i, vi(0) = U0,i, i = 0, 1, . . . ,M. (6)

The following statement takes place.
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Theorem. If 0 < p ≤ 1, q ≥ 2 and the initial-boundary value problem (2),(3)
has the sufficiently smooth solution U = U(x, t), V = V (x, t), then the semi-discrete
scheme (4)-(6) converges and the following estimate is true

∥u(t)− U(t)∥+ ∥v(t)− V (t)∥ ≤ Ch.

Here ∥·∥ is a discrete analog of the norm of the space L2(0, 1) and C is a positive
constant independent of h.

Note that for solving the corresponding to (4) finite difference scheme we use an
algorithm analogical to [12]. So, it is necessary to use Newton iterative process [19].
According to this method the great numbers of numerical experiments are carried out.
These experiments agree with the theoretical result.
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