Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 28, 2014

PRECISE EXPONENTIAL MR-GROUPS

Amaglobeli M.

Abstract. The category of exponential MR-groups for an associative ring R with unity is defined in [1]. The present paper is devoted to the study of partial MR-exponential groups which are isomorphically embedded in their tensor completion over the ring R. The key to its understanding is the notion of tensor completion introduced in [1]. As a consequence, the description of free MR-groups in the language of group constructions is obtained.

Keywords and phrases: Exponential *R*-group, Lyndon *R*-group, MR-group, tensor completion.

AMS subject classification: 20B07.

Let R be any associative ring with identity. Myasnikov and Remeslennikov [1] introduced a new category of exponential R-groups as a natural generalization of the notion of an R-module to the noncommutative case. Below, we recall the basic definitions borrowed from [1], [2].

Let $\mathcal{L}_{gr} = \langle \cdot, -1, e \rangle$ be the group language (signature); here \cdot denotes the binary operation of multiplication, $^{-1}$ denotes the unary operation of inversion, and e is a constant symbol for the identity element of the group.

We enrich the group language to the language $\mathcal{L}_{gr}^* = \mathcal{L}_{gr} \cup \{f_{\alpha}(x) | \alpha \in R\}$, where $f_{\alpha}(x)$ is the unary algebraic operation.

Definition 1. A Lyndon *R*-group is a set *G* on which the operations \cdot , $^{-1}$, *e*, and $\{f_{\alpha}(x) \mid \alpha \in R\}$ are defined and the following axioms hold:

(i) the group axioms;

(ii) for all $g, h \in G$ and elements $\alpha, \beta \in R$,

$$g^{1} = g, \quad g^{0} = e, \quad e^{\alpha} = e;$$
 (1)

$$g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, \quad g^{\alpha\beta} = (g^{\alpha})^{\beta}; \tag{2}$$

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h.$$
 (3)

For brevity, in the formulas expressing the axioms, we write $f_{\alpha}(g)$ instead of g^{α} for $g \in G$ and $\alpha \in R$.

Let LG(R) denote the category of all Lyndon *R*-groups. Since the axioms given above are universal axioms of the language \mathcal{L}_{gr}^* , the general theorems of inversal algebra allow us to consider the variety of *R*-groups. *R*-homomorphisms, *R*-isomorphisms, free *R*-groups, and so on.

MR-exponential groups. There exist Abelian Lyndon R-groups which are not R-modules (see [3], where the structure of a free Abelian R-group was studied in

detail). The authors of [1] augmented Lyndon's axioms by the additional axiom (quasiidentity):

(MR) $\forall g, h \in G, \ \alpha \in R \ [g, h] = 1 \Longrightarrow (gh)^{\alpha} = g^{\alpha}h^{\alpha}.$ (4)

Definition 2. An MR-group is a group G on which the operations g^{α} are defined for all $g \in G$ and $\alpha \in R$ so that axioms (1)–(4) hold.

Let MG(R) denote the class of all *R*-exponential groups with axioms (1)–(4). Clearly, this class is a quasi-variety in the language \mathcal{L}_{gr}^* , and free MR-groups, MRhomomorphisms, and so on are defined; moreover, each Abelian MR-group is an *R*module, and vice versa.

Most of natural examples of exponential groups belong to the class MG(R):

- 1) An arbitrary group is a \mathbb{Z} -group;
- 2) An Abelian divisible group from $LG(\mathbb{Q})$ is an $MG(\mathbb{Q})$ -group;
- 3) A group of the period m is a $\mathbb{Z}/m\mathbb{Z}$ -group;
- 4) A module over the ring R is an Abelian MR-group;
- 5) Free Lyndon *R*-groups are MR-groups;
- 6) The exponential nilpotent *R*-groups over the binomial ring *R* introduced by F. Hall in [4] are MR-groups;
- 7) An arbitrary pro-*p*-group is a $\mathbb{Z}_{p^{\infty}}$ -group over a ring of integer *p*-adic numbers $\mathbb{Z}_{p^{\infty}}$.

Definition 3. A homomorphism of *R*-groups $\varphi : G \to H$ is called an *R*-homomorphism if

$$\varphi(g^{\alpha}) = \varphi(g)^{\alpha}, \ g \in G, \ \alpha \in R.$$

For the basic definitions in the category MG(R) and the results an these groups we refer the reader to [1], [2], [6].

For the completeness of our discussion, we give here the definition of the notion of tensor completion.

Definition 4. Let G be an R-group and $\mu : R \to S$ a homomorphism of rings. Then a S-group G^S will be called a *tensor S-completion* of the group G if G^S satisfies the following universal property:

- (1) there exists an *R*-homomorphism $\lambda : G \to G^S$ such that $\lambda(G)$ *S*-generates G^S , i.e. $\langle \lambda(G) \rangle_S = G^S$;
- (2) for any S-group H and any R-homomorphism $\varphi : G \to H$ coordinated with μ (i.e., $\varphi(g^{\alpha}) = \varphi(g)^{\mu(\alpha)}$) there exists a S-homomorphism $\psi : G^S \to H$, rendering the following diagram commutative:

$$\begin{array}{c|c} G \xrightarrow{\lambda} G^{S} \\ \varphi & \swarrow \psi \\ H \end{array}, \quad \lambda \psi = \varphi.$$

Note that if G is an Abelian R-group, then $G^S \cong G \bigotimes_R S$ is a tensor product of an R-module G by a ring S.

In [1], it is proved that for any MR-group G and any homomorphism $\mu : R \to S$ the tensor completion G^S exists always and it is unique to within an isomorphism.

In applications, $\mu : R \to S$ is most often be an inclusion map of rings, but in this case the homomorphism $\lambda : G \to G^S$ is not necessarily an inclusion map. Since in the Abelian case the group G^S is obtained by the operation of tensor product of R-module G a ring S, corresponding examples are in many books on commutative algebra and homology theory. The following proposition describes the situation where λ is an inclusion map.

Definition 5. We say that an *R*-group is approximated by a *S*-group with respect to a homomorphism μ if for any $e \neq g \in G$ there exists an MR-homomorphism $\varphi_g : G \to H$ coordinated with μ such that $\varphi_g(g) \neq e$.

Proposition 1 ([1]). Let an MR-group G be approximated with respect to a homomorphism μ . Then the homomorphism $\lambda : G \to G^S$ is an inclusion map.

In what follows we investigate the notion of *tensor completion precision*. It is convenient to construct a tensor completion of a given group step by step, defining powers gradually. This involves the notion of a partial R-group. Some group operations on an MR-group involve partial MR-groups. Let R be a ring, let G be a group.

Definition 6. We call the group G a partial MR-group if exponentiation is defined for some pairs (g, α) , but not necessarily defined for all pairs and if a part of the equation in the axioms (1)–(4) of the definition of an exponential group is true. The class of partial MR-exponential groups is denoted by \mathcal{P}_R .

Example. let be a subgroup R of the ring S. Then any MR-group is a partial MS-group.

In the remainder of the paper it is assumed that the ring R as a subring contains the ring of integer numbers \mathbb{Z} .

Let G be a partial R-group, i.e. $G \in \mathcal{P}_R$.

Definition 7. We say that the group G is precise with respect to the ring R if the canonical mapping $\lambda : G \to G^R$ is an embedding.

Definition 8. We say that the group G is *precise* if it is precise with respect to any ring containing \mathbb{Z} .

In [5], G. Baumslag proved that if G is a free group and R is a field of rational numbers \mathbb{Q} , then G is a precise group. In [2], R. Lyndon proved that if G is a free group, $R = \mathbb{Q}$ or $R = \mathbb{Z}[z_1, \ldots, x_n]$ is a ring of integer polynomials, then G is a precise group.

We will prove precision for a wider class of groups and a wider class of rings. Let us introduce the needed definitions.

Let R be a ring, \mathcal{P}_R^0 be the category of partial R-groups. By definition, a group G from \mathcal{P}_R belongs to \mathcal{P}_R^0 if:

1) for any maximal Abelian subgroup M and any $x \notin M$, the intersection $M \cap M^x = 1$;

2) the canonical homomorphism $i: M \to M \underset{R}{\otimes} R$ is an embedding.

Here we use the notion of a partial tensor product which is intoroduced and studied in [1].

The following theorem is the basic one.

Theorem 1 ([6]). Let \mathbb{Z} be a subring of the ring R and the group $G \in \mathcal{P}_R^0$; also, G and R^+ (an additive group of the ring R) not contain elements of order 2. Then the group G^R is precise, i.e. the canonical homomorphism $\lambda : G \to G^R$ is an embedding.

This theorem provides a sufficient condition for the tensor completion to be precise. Note that condition 1) from the definition of the class \mathcal{P}^0_R is also a necessary one.

The proof of this theorem employs the technique of tensor completion construction based on the construction of a free product of groups with an adjoint subgroup and the technique of combinatorial theory of groups.

Theorem 2 ([6]). The class \mathcal{P}_R^0 contains free groups closed with respect to direct limits and free products.

Thus we see that this theorem generalizes the results of G. Baumslag and R. Lyndon. **Theorem 3 ([6]).** The tensor completion of an abstract free group $F(X)^R$ is an *R*-free group $F_R(X)$ with base X.

Let us formulate the corollary of Basic Theorem 1 and Theorem 2.

Corollary. Let R be the ring containing Z as a subring. Then the free group F(X) is precise with respect to the ring R. In other words, F(X) is a subgroup of $F_R(X)$.

REFERENCES

1. Myasnikov A.G., Remeslennikov V.N. Degree groups. I. Foundations of the theory and tensor completions. (Russian) *Sibirsk. Mat. Zh.*, **35**, 5 (1994), 1106-1118. English translation: *Siberian Math. J.*, **35**, 5 (1994), 986-996.

2. Lyndon R.C. Groups with parametric exponents. Trans. Amer. Math. Soc. 96, (1960), 518-533.

3. Baumslag G. Free Abelian X-groups. Illinois J. Math., 30, 2 (1986), 235-245.

4. Hall P. The Edmonton Notes on Nilpotent Groups. Queen Mary College, London, 1957.

5. Baumslag G. On free *D*-groups. Comm. Pure Appl. Math., 18, (1965), 25-30.

6. Amaglobeli M. Power groups. J. Math. Sci., 186, 6 (2012), 811-865.

Received 12.05.2014; revised 11.11.2014; accepted 29.12.2014.

Author's address:

M. Amaglobeli Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: mikheil.amaglobeli@tsu.ge