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ABOUT ONE BOUNDARY VALUE PROBLEM FOR NONLINEAR
NON-SHALLOW SPHERICAL SHELLS
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Abstract. In the present paper, using the method of I. Vekua, the three dimensional prob-

lems of the nonlinear theory of elasticity are reduced to the two dimensional problems of

non-shallow spherical shells. Using the method of the small parameter, approximate solu-

tions of these equations are constructed. One boundary value problems are solved for the

approximation of order N = 0.
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I. Vekua has constructed the refined theory of shallow shells [1],[2]. This method
for non-shallow shells in case of the geometrical and physical non-linear theory was
generalized by T.Meunargia [3],[4].

In the present paper we consider the system of equilibrium equations of the two-
dimensional geometrically nonlinear non-shallow spherical shells which are obtained
from the three-dimensional problems of the theory of elasticity for isotropic and homo-
geneous shell by the method of I. Vekua.

A complete system of equations of the three-dimensional nonlinear theory of elas-
ticity can be written as:
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where x1, x2 and x3 are curvilinear coordinates, g is the discriminant of the metric
tensor of the space, T⃗ i are contravariant stress vectors, Φ⃗ is an external force, λ and
µ are Lame’s constants, R⃗i and R⃗

i are covariant and contravariant base vectors of the
space and u⃗ is the displacement vector.

From (1) the system of equilibrium equations of the two-dimensional geometrically
nonlinear and non-shallow spherical shells may be written in the following form (ap-
proximation N=0):
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αβ − εσα3 + F β = 0, β = 1, 2
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β + F 3 = 0,
(3)

where σ⃗i = σiβ r⃗β + σi3n⃗, ε =
h

ρ
, 2h is the thickness of the shell, ρ is the radius of the
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middle surface of the spherical shell, ∇α are covariant derivatives and
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Hooke’s law has the form:
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(4)

To find components of the displacements vector and stress tensor, we take the
following series of expansions with respect to the small parameter ε[5]
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Substituting the above expansions into relations (3), (4) and then equalizing the coef-
ficients of expansions for εn, we obtain the following system of equations:
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the isometric coordinates on the shell midsurface of a spherical shell,
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Introducing the well-known differential operators
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Simple calculations show that general solutions of system (6) and (7) can be repre-

sented by means of three analytic functions of z in the form

(k)
u + = −κ

π

∫∫
D

Λ(ζ, ζ)φ′(ζ)dξdη

ζ − z
+

 1

π

∫∫
D

Λ(ζ, ζ)dξdη

ζ − z

φ′(z) (8)

−ψ(z) + 1

8µh2
λ+ µ

λ+ 2µ

1

π

∫∫
D

(k)

F +(ζ, ζ)dξdη

ζ − z

(k)
u 3 = f(z) + f(z)− 2

π

∫∫
D

(k)

X 3ln|ζ − z|dξdη, (9)

where φ′(z), f(z) and ψ(z) are analytic functions of z = x1 + ix2 ∈ D, and ζ = ξ + iη.
Further,
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D is the domain of the plane Ox1x2 onto which the midsurface S of the shell Ω is
mapped topologically.

Here we present a general scheme of solution of boundary problems when the domain
D is a circle of radius r0.

The second boundary problem (in displacements) for any k takes the form
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Next φ′(z), ψ(z) and
(k)

G + are expanded in power series of the type

φ′(z) =
∞∑
n=0

anz
n, ψ(z) =

∞∑
n=1

bnz
n,

(k)

G + =
∞∑

n=∞

Ake
ikθ.

Assuming that the above-mentioned series for φ′(z) and ψ(z) converge not only
inside the circle |z| = r0, but also on the circumference |z| = r0 and then substituting
these expansions into (9) and comparing the coefficients for eikθ we obtain
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A solution of the boundary problem (11) is representable in the form of the Poisson
integral
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