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ABOUT ONE BOUNDARY VALUE PROBLEM FOR NONLINEAR
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Abstract. In the present paper, using the method of I. Vekua, the three dimensional prob-
lems of the nonlinear theory of elasticity are reduced to the two dimensional problems of
non-shallow spherical shells. Using the method of the small parameter, approximate solu-
tions of these equations are constructed. One boundary value problems are solved for the
approximation of order N = 0.
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I. Vekua has constructed the refined theory of shallow shells [1],]2]. This method
for non-shallow shells in case of the geometrical and physical non-linear theory was
generalized by T.Meunargia [3],[4].

In the present paper we consider the system of equilibrium equations of the two-
dimensional geometrically nonlinear non-shallow spherical shells which are obtained
from the three-dimensional problems of the theory of elasticity for isotropic and homo-
geneous shell by the method of I. Vekua.

A complete system of equations of the three-dimensional nonlinear theory of elas-
ticity can be written as:
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where 2!, 2% and 23 are curvilinear coordinates, g is the discriminant of the metric
tensor of the space, T are contravariant stress vectors, d is an external force, A and
w are Lame’s constants, R; and R' are covariant and contravariant base vectors of the
space and # is the displacement vector.

From (1) the system of equilibrium equations of the two-dimensional geometrically
nonlinear and non-shallow spherical shells may be written in the following form (ap-
proximation N=0):
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where 6" = 0’5775 + 07, e = —, 2h is the thickness of the shell, p is the radius of the
p
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middle surface of the spherical shell, V, are covariant derivatives and
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Hooke’s law has the form:
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To find components of the displacements vector and stress tensor, we take the
following series of expansions with respect to the small parameter 5]
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Substituting the above expansions into relations (3), (4) and then equalizing the coef-
ficients of expansions for ", we obtain the following system of equations:
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the isometric coordinates on the shell midsurface of a spherical shell,
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Introducing the well-known differential operators
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X +and X jareexpressed by v ., u 3,..., u 4, u 3 and it is assumed that

they are already found.
Simple calculations show that general solutions of system (6) and (7) can be repre-
sented by means of three analytic functions of z in the form
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where ¢'(2), f(2) and 1(z) are analytic functions of z = z1 + izg € D, and ¢ = & + in.
Further,
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D is the domain of the plane Oxix5 onto which the midsurface S of the shell Q is
mapped topologically.

Here we present a general scheme of solution of boundary problems when the domain
D is a circle of radius rg.

The second boundary problem (in displacements) for any k takes the form
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where G ; and (G 3 are the known values containing solutions w ;, w 4, ..., u

(1 =1,2,3) of the previous approximations.
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(k)
Next ¢/(z), ¥(z) and G 4 are expanded in power series of the type
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Assuming that the above-mentioned series for ¢'(z) and (z) converge not only
inside the circle |z| = rg, but also on the circumference |z| = ry and then substituting

these expansions into (9) and comparing the coefficients for e’*’ we obtain
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A solution of the boundary problem (11) is representable in the form of the Poisson
integral
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