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Let us consider the following problem:

L(∂x, ∂y;x, y)u(x, y) = (A∂xx + 2B∂xy + C∂yy + a∂x + b∂y + c)u = f,

0 ≤ r < 1, u|r=1 = g(x, y),

where u = u(x, y) is unknown vector-function, for example ∂x is partial derivative of
first order, the other variable coefficients are known and coordinated with u(x, y) It’s
evident that this problem is equivalent to another one:

L(∂r, ∂ϕ; r, ϕ)u = f, u|r=1 = g(1, ϕ),
u(r, 0) = u(r, 2π), u(0, ϕ) = const.

(1)

Now we will use the finite-difference method (FDM) when 1 = mh, 2π = nτ . As the
circle mapped into rectangle and the boundary conditions (BC) will be defining exactly
when r = 1. For simplicity and clarity we consider only five or nine point FD pattern.
In this case the problem (1),with respect to exactness of remainder terms, are same to
the following three-point operator expression:

A1,iUi+1 + A0,iUi + A−1,iUi−1 = Fi, i = m− 1,m− 2, ..., 1,
A1,i + A0,i + A−1,i = c,
U0 = U0(0)(1, 1, ..., 1)

T , Ui = (Ui(0), ..., Ui(n− 1))T .
(2)

Here Aα,i (α = 0,±1) are Jacobi type cyclic matrices for which the first supper-row’s
last and the latter supper-row’s first elements are in general nontrivial values.

Now we consider the following problem:

L∗(∂x, ∂y)u+ (L− L∗)u = f, 0 ≤ r ≤ h, u|r=h = g(h, ϕ). (3)

Here the linear operator L∗ = L∗(∂x, ∂y) is a comparatively simple structure and in the
certain sense similar to operator L. It’s evident that if the mesh width is sufficient small
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the difference L−L∗ = εM , where M is fully defined similar to L or less order to him
differential operator while ε = ε(h) is a small parameter. By methodology of [1, pp.124-
127] the scheme of find the approximate solution of (3) closed in the inversion of the
operator L∗ and the application εM to known vector-functions formulated by recursive
precesses n times. The exactness of this methodology on the sufficient differentiable
classes of functions is O(εn). By this process the vector-function U0 would be defined
evidently.

It’s possible to use for approximate solution of (3) the Green function and iteration
methods. As far as L∗ is differentialial operator, let us assume that for him is true the
representation of corresponding solution by Green function method (for example, see
[2-7]). Now the iteration process we write in the following form:

u[s](r, ϕ) =
∫

ρ≤h

G1(r, φ, ρ, ϑ)[f(ρ, ϑ)− (L− L∗)us−1(ρ, ϑ)]dρdϑ

−
∫

ρ=h

G2(r, φ, ϑ)[g(h, ϑ) ≡ us−1(h, ϑ)]dϑ, s = 0, 1, 2, ....
(4)

where G1, G2-are the Green matrix-functions and u[0](x, y) is an initial approximation.
As so h is arbitrary and may be sufficient small the process defining by (4) is

convergent.
It’s evident that for our aim is sufficient to use process (4) when r = 0 and thus we

find approximately U0.
Evidently that above-mentioned analytical-numerical scheme are true when we have

circular sectors and segments, spherical, ellipsoidal, toroidal, cylindrical regions but not
only Dirichlet type BC.

It’s necessary to remark that the numerical schemes when the domains are rectan-
gles or parallelepipeds, etc in polar, cylindrical or other curvilinear coordinates systems
with classical BC were considered and investigated by many authors(for this is suffi-
cient to cited typical monograph [8, pp.550-584]). Our considerations are essentially
different from these investigations as well as we studied boundary value problems(BVP)
with nonclassical BC.

As typical example we consider Dirichlet problem for Laplace equation in the circle

∆u(x, y) = 0, 0 ≤ x2 + y2 < R2, u|r=R = g(x, y). (A)

There are well-known that the solution of this this problem is representing in two
equivalent forms: by Poisson Integral (PI) and Trigonometrical Series(TS).

Let us assume that the aim of an user is tabulation of function u(x, y) by PI. If
the calculate of integrals are difficult or impossible for tabulation are using quadrature
formulas dividing (0, 2π) into n part. The order of arithmetical operations (AOs) for
find the approximate solution is O(n) Horner (H). As the number of net points are
≈ n2, for tabulation of unknown function is necessary O(n3) H AOs (here we neglected
the additional AOs connected with calculation of cos(φ− ϑk) functions).

In case of applied TS for find its coefficients by quadrature formulas and tabulation
of unknown function it’s necessary O(n4 log2 n) order of AOs if we using ”The Fast
Fourier Transformation” too.
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Below we consider the problem of approximate solution of (A) by above described
methodology, which also has illustrating character.

Instead of BVP (A) if we introduced polar coordinates, we have:

r
∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂φ2
= 0, u(0, φ) = u(0, 0) =

u′
0

2
, (B)

u(r, 0) = u(r, 2π), u(R,φ) = g(φ), u′
0 =

1

π

2π∫
0

g(ϑ)dϑ.

Now for clarity we use FDM of second order accuracy for BVP (B). Let us prove
that for tabulation of the approximate solution it’s sufficient O[max(h, τ)−2] H AOs
where hm = R, nτ = 2π.

From (B) follows:

((rih
−1)2δ2r + rih

−1δr + τ−2δ2φ)ui,j = O(h2 + τ 2), (5)

i = 1, 2, ...,m− 1, j = 1, 2, ..., n.

where δ, δ2 are the first and second order symmetric difference operators. If we denote
Ui = (ui,1, ui,2, ..., ui,m)

T then (5), without remainder members and by using BC, has
the following form:

Ei−1Ui−1 − AiUi + Ei+1Ui+1 = 0, i = 1, 2, ...,m− 1, (6)

where
Ai = {akj}n×n, akk = 2(1 + r2i τ

2/h2),

ak−1,k = ak+1,k = a1n = an1 = −1, akj = 0, j ̸= k − 1, k, k + 1,

Ei−1 = riτ
2/h(ri/h− 0, 5)E,

Ei+1 = riτ
2/h(ri/h+ 0, 5)E, E = {1, 1, ..., 1},

U0 = 0, 5u′
0(1, 1, ..., 1)

T , Um = (g(τ), g(2τ), ..., g(nτ))T .

We see that the matrix corresponding to system (5) is incomposable and (by theo-
rem of O. Tausski) nondegenerate too as the criterion of diagonal elements domination
property are true for first and latter vectorial equations when i = 1,m−1 in (6). As we
see the matrices Ai are cyclical types. In this case, same algorithm as of three diagonal
Jacobi matrices, for construction of the factorization Gauss type scheme is also true and
directly applicable (see, for example, [9, pp.18,19]) and thus the AOsO(m)H. Let us cal-
culate now the order of AOs for tabulation of unknown vector U = (U1, U2, ..., Um−1)

T .
For this aim let us use the Gauss factorization scheme for tree-point operator equation
(for example, see [8, pp.103-120]). These processes are required the inversion of Ai

type cyclic matrices. On the next step we give new cyclic matrix. The formulation of
such matrices are required O(n) H AOs. By the process of multiplications on diagonal
type matrix Ei the order of AOs is not change. As the number of vector equations is m
the whole AOs (multiplications and divisions) for tabulation of approximate solution
of (B) have O[max(h, τ)−2] order.



To Analytical and Numerical Methods ... 57

R E F E R E N C E S

1. Vashakmadze T.S. The Theory of Anisotropic Elastic Plates. Springer Verlag and Kluwer
Acad. Publ., 2010 (Second edit.).

2. Courant R., Hilbert D. Methods of Mathematical Physics. N.-Y., 2 (1961).
3. Mors Ph., Feshbach H. Methods of Theoretical Physics, McGraw-Hill, 1, 2 (1953).
4. Kantorovich L.V., Krilov V.I. Approximate Methods of Higher Analysis, M.: Phiz- matgiz,

1962.
5. Muskhelishvili N.I. Some Basic problems of Mathematical Theory of Elasticity, M.: Nauka,

1966.
6. Mikhlin S.G. Linear Equations in Partial Derivatives. M.: Visshaia Shkola, 1977.
7. Chkadua O., Mikhailov S., Natroshvili D. Localized boundary-domain singular integral equa-

tions based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients.
Integral Equations and Operator Theory, 76 (2013), 509-547.

8. Samarski A.A., Nikolaev E.S. Methods of Solution of Difference Equations, M.:Nauka, 1978.
9. Alberg J.H., Nilson E.N., Walsh J.l. The Theory of Splines and Their Applications, Acad.

Press, N.-Y./L, 1967.

Received 25.05.2013; revised 30.09.2013; accepted 12.11.2013.

Authors’ addresses:

T. Vashakmadze
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia

Department of Mathematics
of Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
e-mail: tamazvashakmadze@gmail.com




