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Abstract. In this present paper is suggested the method of a small parameter for I. Vekua’s
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1. Non-Shallow and Shallow Shells
Let R be a radius-vector a point with coordinates (x1, x2, x3), that is

R(x1, x2, x3) = r(x1, x2) + x3n(x1, x2),

where r and n are, respectively, radius-vector and unit vector of the normal to the
midsurface S at the (x1, x2). If 2h is the shell thickness, then −h ≤ x3 ≤ h.

The so-called local basis vectors have the form:
a) For non-shallow shells [1]:

∂αR=Rα = (aβα − x3b
β
α)rβ, Rα = ϑ−1(aαβ + x3L

α
β)rβ,

∂3R=R3 = R3 = n, (α, β = 1, 2;x3 = x3) (1)

where aβα(aαβ, a
αβ) and bβα(bαβ, b

αβ) are components, respectively, of the metric and cur-
vatures tensors of surface S, H and K are middle and principal (Gaussian) curvatures
of the surface S,

2H = b11 + b22, K = b11b
2
2 + b12b

2
1, ϑ = 1− 2Hx3 +Kx2

3, Lα
β = bαβ − 2Haαβ .

b) For non-shallow shells (Koiter-Naghdi) we have

Rα=(aβα − x3b
β
α)rβ, Rα=(aαβ + x3b

α
β)r

β, R3 = R3. (2)

c) For shallow shells it may be assumed that

Rα
∼=rα, Rα∼=rα ⇒ x3b

β
α
∼= 0 ⇒ hbβα

∼= 0. (3)

2. Equations of equilibrium an elastic medium (vector and tensor notes)

1
√
g

∂
√
gσi

∂xi
+Ψ = 0, (g = det{gij}, gij = RiRj, i, j = 1, 2, 3),

σi = Eijpqepq(Rj + ∂jU), (geometrically nonlinear),
Eijpq=λgijgpq + µ(gipgjq + giqgjp), (gij = RiRj),

epq =
1

2
(Rq∂pU+Rp∂qU+ ∂pU∂qU), (p, q = 1, 2, 3),

(4)
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where σi = σij(Rj + ∂jU) are contravariant constituents of the stress tensor, U is the
displacement vector. Since g = aϑ2 (a = det{aαβ}) and ϑσi = Ti, then equations (4)
for elastic shells can be rewritten as

∇αT
α + ∂3T

3 +Φ = 0, (Φ = ϑΨ) ⇒

∇αT
αβ − bβαT

α3 + Φβ = 0,
∇αT

α3 + bαβT
α3 + Φ3 = 0,

(5)

where ∇α are covariant derivatives with respect to the x1, x2 - Gaussian parameters of
the surface S, T ij = Ti · rj - contravariant components of the stress tensor, Φi = ϑΨi,
further

Ti = ϑσ =
1

2
ϑAi

i1
M i1j1p1q1 [Ap

p1
(rq1∂pU) + Aq

q1
(rp1∂qU) + Ap

p1
Aq

q1
∂pU∂qU]

×(rj1 + Aj
j1
∂jU)

(6)

Ai
i1
= Riri1 ⇒ Aα

α1
= ϑ−1[aαα1

+ x3(b
α
α1

− 2Haαα1
)],

Aα
3 = A3

α = 0, A3
3 = nn = 1,

M i1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1),
(aαβ= = rα · rβ, aα3 = 0, a33 = 1).

(7)

Then by means of I. Vekua’s method 3-D problems are reduced to the 2-D problems
of the theory shells:

h∫
−h

(∇αT
α + ∂3T

3 +Φ)Pm

(x3

h

)
dx3 = 0 ⇒

(m = 0, 1, ...)

∇α

(m)

Tαβ − bβα

(m)

Tα3 − 2m+ 1

h

((m−1)

T 3β +
(m−3)

T 3β + · · ·
)
+

(m)

F β = 0,

∇α

(m)

Tα3 + bαβ

(m)

Tαβ − 2m+ 1

h

((m−1)

T 3
3 +

(m−3)

T 3
3 + · · ·

)
+

(m)

F 3 = 0,

(8)

where Pm

(
x3

h

)
is Legendre polynomials in the interval x3 ∈ [−h, h],(

(m)

Ti,
(m)

U ,
(m)

Φ ,

)
=

2m+ 1

h

h∫
−h

(
Ti, U, Φ

)
Pm

(x3

h

)
dx3,

(m)

F =
(m)

Φ +
2m+ 1

h

(
(+)

T3 − (−1)m
(−)

T3

)
,

(±)

T3 = T3
(
x1, x2,±h

)
.

Now we have the following integrals
a) for shallow shells (see 1-3):

h∫
−h

PsPmdx3 =
2h

m+ s+ 1
δms,

h∫
−h

Ps1Ps2Pmdx3,

h∫
−h

Ps1Ps2Ps3Pmdx3.
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It should be noted that those integrals can be calculation by means Adams formulas

Pm(x)Pn(x) =

min(m,n)∑
r=0

Am−rArAn−r

Am+n−r

2(m+ n)− 4r + 1

2(m+ n)− 2r + 1
Pm+n−2r(x),

Am =
1 · 3 · · · (2m− 1)

m!
.

b) For non-shallow shells (Koiter-Naghdi) we have the following integrals:

h∫
−h

xk
3Ps1 · · · PsnPmdx3, (n = 1, 2, 3; k = 0, 1, ..., 5),

which calculation also by Adams formulas.
c) For non-shallow shells (I. Vekua) we have integrals of the types

h∫
−h

xk
3Ps1 · · · PsnPm

(1− 2Hx3 +Kx2
3)

n
dx3, (n = 0, 1, 2, 3; k = 0, 1, ..., 4),

which calculation by Adams and F. Neuman formulas:

1

2

1∫
−1

Pm(y)dy

x− y
= Qm(x), |x| > 1 (F.Neuman),

where Qm(x) is the Legendre function on the second kind.
For example we have

h∫
−h

(aαα1
− x3L

α
α1
)(aββ1

− x3L
β
β1
)

1− 2Hx3 +Kx2
3

PsPmdx3

=

[
Bα

α1
(hy)Bβ

β1
(hy)

2
√
Eh

(
Pm(y)Qs(y), m ≤ s
Qm(y)Ps(y), m ≥ s

)]y2
y1

+
2h

m+ s+ 1

Lα
α1
Lβ

β1

K
δms,

where Bα
α1
(hy) = aαα1

+ hyLα
α1
, Lα

α1
= bαα1

− 2Haαα1
, E = H2 −K,

[f(y)]y2y1 = f(y2)− f(y1), y1,2 =
[
(H ∓

√
E)h

]−1

.

3. Introduction of a small parameter
Let ρ = max{bαβ , bαβ, bαβ} ⇒ h < ρ ⇒ ε = h

ρ
< 1 (x1, x2 ∈ S).

Therefore they can be represented as follows

|εbβαϱ| ≤ q < 1,

where ε is a small parameter, h is semithickness of shell.
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Now we assume the validity of the expansions for the approximation of order N :(
(m)

Ti,
(m)

U ,
(m)

F ,

)
=

∞∑
n=1

(
(m,n)

Ti ,
(m,n)

U ,
(m,n)

F ,

)
εn, (m = 0, 1, ..., N).

Substituting the above expansions into the relations (8) and equalizing the coeffi-
cients of expansions for εn, we obtain the following 2-D finite system of equilibrium
equations with respect to the components of displacement vector in the isometric co-
ordinates:

4µ∂z

(
Λ−1∂z

(m,n)
u+

)
+ 2(λ+ µ)∂z

(m,n)

θ +
2λ

h
∂z
(m,n)

u′
3 − 2m+ 1

h
µ
[
2∂z

(
(m−1,n)
u3 +

(m−3,n)
u3 + · · ·

)
+

(m−1,n)

u′
+ +

(m−3,n)

u′
+ + · · ·

]
+

(m,n)

F+ = 0, (9)

µ
(
∇2(m,n)

u3 +
(m,n)

θ′
)
− 2m+ 1

h

[
λ
((m−1,n)

θ +
(m−3,n)

θ + · · ·
)
+

(λ+ 2µ)
((m−1,n)

u′
3 +

(m−3,n)

u′
3 + · · ·

)]
+

(m,n)

F3 = 0,

where u+ = u1 + iu2, θ = Λ−1
(
∂zu+ + ∂zu+

)
,
(m)

u′ = 2m+1
h

(
(m+1)
u +

(m+3)
u + · · ·

)
, ds2 =

Λ(z, z)dzdz, z = x1 + ix2,2∂z = ∂1 − i∂2, ∇2 = 4
Λ

∂2

∂z∂z
.

Obviously, in passing from the n-th step to the (n+ 1)-th step only the right hand
of equations are changed.

Note that the system (9) we can write as

µ∆
(m)
u+ + 2(λ+ µ)∂z

(m)

θ +
(m)

L+

(
(1)
ui, ...,

(N−1)
ui

)
= 0, (L+ = L1 + iL2) (10)

µ∆
(m)
u3 +

(m)

L3

(
(1)
ui, ...,

(N−1)
ui

)
= 0, (m = 0, 1, ..., N)

where ∆ is Laplace operator ∆ = 4 ∂2

∂z∂z
and

(m)

Li are linear differential operators con-

taining unknown vector-functions
(k)

U and their first-order derivatives with respect to z.
It is important to note that the finite system (10) makes the above suggested version
of shell theory closer to the equations of the classical plane theory of elasticity to the
Poisson equation.
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