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Abstract. One nonlinear integro-differential equation with source terms is considered. The

model arises at describing penetration of a magnetic field into a substance and is based

on Maxwell’s system. Existence, uniqueness and large time behavior of solutions of the

initial-boundary value problem as well as semi-discrete scheme is studied. More wide class

of nonlinearity is considered than one has been already investigated in construction of semi-

discrete analogue.
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One kind of nonlinear integro-differential model arises on mathematical simulation
of the process of penetration of a magnetic field into a substance [1]. This model
were introduced after reduction the nonlinear Maxwell’s differential system [2] to the
integro-differential form. In [3] some generalization of such type models is given. One-
dimensional simple analog describing the same physical process has the following form
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where a = a(S) ≥ Const > 0 is a given function of its argument.
Many works are dedicated to the investigation and numerical resolution of the

integro-differential models described in [1] and [3]. Particularly, in [1], [3]-[10] solvabil-
ity and uniqueness of the initial-boundary value problems for these type equations are
studied. Asymptotic behavior of solutions as t → ∞ is investigated in many works also
(see, for example, [9],[11]-[20] and references therein). Numerical resolution is given in
works [10], [15]-[22] and in a number of other works as well.

The aim of this note is to study asymptotic behavior of solution as t → ∞ and
investigate convergence of corresponding semi-discrete scheme for one generalization of
the equation type (1) by adding monotonic nonlinear term. Existence and uniqueness
of solutions of the initial-boundary value problem is studied as well. More wide class
of nonlinearity is considered than one has been already investigated in construction of
semi-discrete analogue. The investigated equation has the form
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where 0 < p ≤ 1 and q ≥ 2.
Let us note that such kind generalizations for the equation described in [1] is made

in [18] and for (2) type equation is discussed in the work [20].
In the [0, 1]× [0,∞) let us consider following initial-boundary value problem:

U(0, t) = U(1, t) = 0,
U(x, 0) = U0(x),

(3)

where U0 = U0(x) is given function.
The following statement of existence, uniqueness and asymptotic behavior of the

solution is true.
Theorem 1. If 0 < p ≤ 1, q ≥ 2 and U0 ∈ H1

0 (0, 1), then where exist unique
solution of problem (2),(3) and the following asymptotic property takes place

∥U∥+
∥∥∥∥∂U∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Here ∥·∥ is the usual norm of the space L2(0, 1) and C denotes positive constant
independent of t.

On [0,1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M ,
with h = 1/M . The boundaries are specified by i = 0 and i = M . The semi-discrete
approximation at (xi, t) is designed by ui = ui(t). The exact solution to the problem at
(xi, t) is denoted by Ui = Ui(t). At points i = 1, 2, . . . ,M − 1, the integro-differential
equation will be replaced by approximation of the space derivatives by a forward and
backward differences. We will use the following known notations:

rx,i(t) =
ri+1(t)− ri(t)

h
, rx̄,i(t) =

ri(t)− ri−1(t)

h
, rx̄x,i(t) =

ri+1(t)− 2ri(t) + ri−1(t)

h2
.

Let us correspond to problem (2),(3) the following semi-discrete scheme:

dui

dt
=

1 + h

M∑
i=1

t∫
0

(ux̄,i)
2 dτ

p

ux̄x,i − |ui|q−2ui,

i = 1, 2, . . . ,M − 1,

(4)

u0(t) = uM(t) = 0, (5)

ui(0) = U0,i, i = 0, 1, . . . ,M. (6)

So, we obtained Cauchy problem (4)-(6) for nonlinear system of ordinary integro-
differential equations.

Introduce inner product and norm:

(r, g) = h
M−1∑
i=1

rigi, ∥r∥ = (r, r)1/2.

The following statement takes place.
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Theorem 2. If 0 < p ≤ 1, q ≥ 2 and problem (2),(3) has a sufficiently smooth
solution U = U(x, t), then the solution u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of problem
(4)-(6) tends to U = U(t) = (U1(t), U2(t), . . . , UM−1(t)) as h → 0 and the following
estimate is true

∥u(t)− U(t)∥ ≤ Ch.

Note that investigated semi-discrete scheme (4) - (6) is using for numerical solution
of the problem (2), (3) by natural discretisation of time derivative and integral as it
is given for example in [22] for the case p = 1. Solving the obtaining finite difference
scheme we use a algorithm analogical to [17]. So, it is necessary to use Newton iterative
process. According to this method the great numbers of numerical experiments are
carried out. These experiments agree with the theoretical results given in the Theorems
1 and 2.
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