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Abstract. In the present work there is considered Caushy problem for abstract quasi-

linear evolution equation with variable operator. For the considered problem the third order

decomposition scheme is constructed and the convergence theorem for approximate solution

is proved.
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1. Introduction. Numerical computation of multi-dimensional problems using
direct methods requires large computational time and resources. The most widespread
and effective method for numerical calculations of multi-dimensional problems is de-
composition (operator-splitting) method. Using the operator-splitting method, ap-
proximate solution of multi-dimensional problem can be deduced to solutions of one-
dimensional problems. Namely, approximate solution of multi-dimensional problem
can be constructed by solutions of one-dimensional problems, that significantly reduces
time of numerical computation and makes the algorithm effective.

In the present work there is constructed the third order decomposition scheme for
quasi-linear (with Lipshitz continuous operator) abstract evolution equation with vari-
able operator. The third order operator splitting scheme for linear case is constructed
in [1]-[3] and we generalize the same approach for quasi-linear equaion with variable
operator. The convergence theorem for approximate solution is proved.

2. Statement of the problem. Let us consider the following problem:

du (t)

dt
+ b (t)Au (t) +M (u (t)) = f (t) , t > 0, (1)

u (0) = φ,

where A is a self-adjoint, positive definite (generally unbounded) operator with the
definition domain D (A), which is everywhere dense in the space H, b (t) ≥ b0 > 0
is a given positive continuous scalar function; φ is a given vector from the definition
domain D (A), f (t) is a continiuously differentiable function, nonlinear operator M (·)
satisfies to Lipschitz condition.

Let A can be represented as a sum of m self-adjoint positive definite operators
A = A1 + ...+ Am.

Let us consider the following problem:

du (t)

dt
+ b (t)Au (t) = f̃ (t, u (t)) , t > 0, u (0) = φ, (2)
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where f̃ (t, u (t)) = f (t) − M (u (t)). If the above-mentioned conditions are satisfied
for the problem (1), then the problem (2) has the unique solution and it is given by
the following formula (see [4],[5]).

u (t) = U (t, 0, A)u (0) +

t∫
0

U (t, s, A) f̃ (s, u (s)) ds, (3)

where U (t, s, A) is a solving operator of the problem (2), for which the following formula
is valid (see [4],[5]):

U (t, s, A) = I −
t∫

s

A (s1)U (t, s1, A) ds1, (4)

where A (s1) = b (s1)A.
using the formula (4) recursively we can obtain the following expansion for U (t, s, A):

U (t, s, A) = I −
t∫

s

A (s1) ds1 +

t∫
s

A (s1)

t∫
s

A (s2) ds2ds1

+...+ (−1)k−1

t∫
s

A (s1)

s1∫
s

A (s2) ...

sk−2∫
s

A (sk−1) dsk−1...ds2ds1

+(−1)k Rk (t, s, A) , (5)

where for the residual Rk (t, s, A) the following representation is valid:

Rk (t, s, A) =

t∫
s

A (s1)

s1∫
s

A (s2) ...

sk−1∫
s

A (sk)U (t, sk, A) dsk−1...ds2ds1 (6)

For the residual term (6) the following estimate is valid:

∥Rk (t, s, A)φ∥ ≤ c (t− s)k ∥φ∥Ak , (7)

where ∥φ∥Ak can be defined recursively:

∥φ∥Ak = ∥A1φ∥Ak−1 + ∥A2φ∥Ak−1 + ...+ ∥Amφ∥Ak−1 , k = 1, 2, ...,

∥φ∥A0 = ∥φ∥ .

Let us introduce the following mesh with respect to time variable

ωτ = {tk = kτ, k = 0, 1, ..., τ > 0} .

To construct the decomposition scheme, we rewrite the formula (3) for the interval
[tk−1, tk+2]. We obtain the formula:

u (tk+2) = U (tk+2, tk−1, A)u (tk−1) +

tk+2∫
tk−1

U (tk+2, s, A) f̃ (s, u (s)) ds, (8)
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3. Decomposition scheme. Let us construct the third order decomposition
scheme for Caushy problem of quasi-linear evolution equation with variable operator
(2). For sake of simplicity we consider the case of m = 2 addends and then generalize
it for any finite number of addends. We replace the solving operator U (tk+2, tk−1, A)
by locally fourth order splitting, and for integral part we use the locally fourth order
quadrature formula. We obtain the third order accuracy decomposition scheme:

uk+2 = V (tk+2, tk−1)uk−1

+
3τ

4

(
3V (tk+2, tk+1) f̃ (tk+1, uk+1) + V (tk+2, tk−1) f̃ (tk+1, uk−1)

)
, (9)

where the operator V (t, s) is defined by the following formula:

V (t, s) =
1

2
(W (t, s;αA1)W (t, s;αA2)W (t, s;αA1)

+ W (t, s;αA2)W (t, s;αA1)W (t, s;αA2)) , (10)

where W (t, s;A) is a locally fourth order rational approximation of the operator
U (t, s;A) and is defined by the following formula:

W (t, s, A) = (I + λ0,t,s (t− s)A) (I + λt,s (t− s)A)−1 (I + λt,s (t− s)A
)−1

. (11)

Here the numerical parameters λ0,t,s and λt,s are defined by the following formulas (λt,s

is a complex conjugate of λt,s):

λ0,t,s =
6γ3

1,t,s − 6γ1,t,sγ2,t,s + γ3,t,s

6γ2
1,t,s − 3γ2,t,s

, λt,s =
1

2

(
dt,s + i

√
4et,s − d2t,s

)
, (12)

dt,s =
3γ1,t,sγ2,t,s − γ3,t,s
6γ2

1,t,s − 3γ2,t,s
, et,s =

3γ3
2,t,s − 3γ1,t,sγ3,t,s

2
(
6γ2

1,t,s − 3γ2,t,s
) ,

γ1,t,s =
3b (t) + b

(
s+ t−s

3

)
4

, γ2,t,s = b2
(
t+ s

2

)
, γ3,t,s = b3

(
t+ s

2

)
.

For numerical realization of the decomposition scheme (9) we need three starting vec-
tors: u0, u1 and u2. u0 = φ is defined from the initial condition. Computation of u1

and u2 by the third order accuracy is carried out by the equation:

ui = V (ti, ti−1)ui−1 +
τ

2

(
3V (ti, ti−1) f̃ (ti−1, ui−1) + f̃ (ti, ui)

)
, i = 1, 2. (13)

The right-hand side of this equation contains the unknown vector ui, therefore for
numerical realization of the scheme (13) it is necessary to use the following iteration:

u
(l+1)
i = Fi +

τ

2
M
(
u
(l)
i

)
, i = 1, 2. (14)

where l is an iteration index, and Fi is defined by the following formula:

Fi = V (ti, ti−1)ui−1 +
τ

2

(
3V (ti, ti−1) f̃ (ti−1, ui−1) + f (ti)

)
. (15)
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The iteration (14) converges quite fast, as the unknown vector in the right-hand side
has small parameter and the operatorM (·) satisfies to Lipschitz condition. Taking into
account these two facts, we can easily show that the iterative process (13) converges
with the rate of geometric progression, where common ratio is equal to τ

2
, multiplied

on Lipschitz constant. To even accelerate the iteration process, the initial iteration
should be taken equal to the solution on the previous time layer: u

(0)
i = ui−1.

4. Convergence theorem. Let us state the theorem on the convergence of
decomposition scheme (9).

Theorem 1. Let the following conditions are satisfied:
a) A,A1 and A2 are self-adjoint, positive definite operators in the Hilbert space H;
b) b (t) is a positive, scalar, three times continuously differentiable function b (t) ≥

b0 > 0, b (t) ∈ C3[0,∞);
c) The operator M (·) satisfies to Lipschitz condition;
d) u (t) ∈ D (A4) for every t ≥ 0;

e) f̃ (t, u (t)) ∈ C3[0,∞;H); f̃ (t, u (t)) ∈ D (A3), f̃ ′ (t, u (t)) ∈ D (A2) and f̃ ′′ (t, u (t))
∈ D (A) for every t ≥ 0;

Then for the error of the approximate solution the estimate holds:

∥u (tk)− uk∥ = O
(
τ 3
)
.

Proof of the theorem is based on the following auxiliary lemmas:
Lemma 1. If the (a) and (b) conditions of Theorem 1 are fulfilled, then for the

operator the following expansion is valid:

W (t, s;A) =
k−1∑
j=0

(−1)j
tj

j!
γj,t,sA

j +RW,k (t, s;A) , k = 1, 2, 3, 4.

where γ0,t,s = 1, and γj,t,s, j = 1, 2, 3 are defined from formulas (12). Besides, for
RW (t, s;A) residual term the estimate holds:

∥RW,k (t, s;A)φ∥ ≤ cec(t−s) (t− s)4
∥∥Akφ

∥∥ , φ ∈ D
(
Ak
)
.

Lemma 2. If the conditions of Theorem 1 is fulfilled then the operator split-
ting V (t, s) approximates the operator U (t, s, A) by the locally fourth order accuracy,
namely, the following estimate holds true:

∥(U (t, s;A)− V (t, s))φ∥ = O (t− s)4 , φ ∈ D
(
A4
)
.

5. Generalization of decomposition scheme for case of any finite number
of addends

Let us note that generalization of decomposition scheme (9) can be easily done for
case of any finite number of addends:

A = A1 + ...+ Am, m > 2.
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In this case, in the decomposition scheme (9) the operator splitting is defined by
the following formula, instead of formula (10):

V (t, s) =
1

2
(W (t, s;αA1)W (t, s;αA2) ...W (t, s;αAm−1)W (t, s;Am)

×W (t, s;αAm−1)W (t, s;αAm−2) ...W (t, s;αA1)

+W (t, s;αAm)W (t, s;αAm−1) ...W (t, s;αA2)W (t, s;A1)

×W (t, s;αA1)W (t, s;αA2) ...W (t, s;αAm) .

where the rational approximation is defined by the formula (11) .
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