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Abstract. One nonlinear integro-differential system is considered. The model describes

penetration of a magnetic field into a substance. Semi-discrete difference scheme with respect

to space variable is studied.

Keywords and phrases: Nonlinear averaged integro-differential system, semi-discrete dif-

ference scheme, convergence.

AMS subject classification: 45K05, 65M06.

In [1] one kind of nonlinear integro-differential system is presented. This model
arises on mathematical simulation of the process of penetration of a magnetic field
into a substance and were introduced after reduction nonlinear Maxwell’s system [2] to
the integro-differential form. In [3] some generalization of such type models is given.
One-dimensional simple analog called by author as averaged model has the following
integro-differential form:

∂U

∂t
− a

 t∫
0

1∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dxdτ

 ∂2U

∂x2
= 0,

∂V

∂t
− a

 t∫
0

1∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dxdτ

 ∂2V

∂x2
= 0,

(1)

where a = a(S) ≥ Const > 0 is a given function of its argument.
Various works are dedicated to the investigation and numerical resolution of the

integro-differential models described in [1] and [3]. Many authors study solvability,
uniqueness (see, for example, [1], [3]-[10] and references therein) and asymptotic be-
havior as t → ∞ of the initial-boundary value problems for these type models (see, for
example, [8],[10]-[24] and references therein). Numerical resolution by finite difference
scheme and finite element method are given in works [10], [14], [16]-[19], [21], [22], [24]
and in a number of other works as well.

The purpose of this note is to construct and investigate semi-discrete difference
approximation for the system (1) with special nonlinearity. This system has the form:

∂U

∂t
−

1 +

t∫
0

1∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dxdτ

p

∂2U

∂x2
= 0,

∂V

∂t
−

1 +

t∫
0

1∫
0

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
dxdτ

p

∂2V

∂x2
= 0.

(2)



2 Aptsiauri M., Gagoshidze M.

Let us note that such kind investigations for the equation and system of type (1)
are studied in [10], [14], [16]-[19], [21], [24] and in a number of other works as well. In
the works [14], [16], [18], [19] fully-discrete finite difference schemes are also studied for
such kind models for the case p=1.

In the [0, 1]× [0, T ] let us consider the following initial-boundary value problem:

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0,
U(x, 0) = U0(x), V (x, 0) = V0(x),

(3)

where U0 = U0(x) and V0 = V0(x) are given functions.
On [0,1] let us introduce a net with mesh points denoted by xi = ih, i = 0, 1, . . . ,M ,

with h = 1/M . The boundaries are specified by i = 0 and i = M . The semi-discrete
approximation at (xi, t) is designed by ui = ui(t) and vi = vi(t). The exact solution of
the problem (2), (3) at (xi, t) is denoted by Ui = Ui(t) and Vi = Vi(t).

Using known notations [23] let us construct the following semi-discrete scheme for
problem (2), (3):
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u0(t) = uM(t) = v0(t) = vM(t) = 0, (5)

ui(0) = U0,i, vi(0) = U0,i, i = 0, 1, . . . ,M. (6)

The following statement takes place.
Theorem. If 0 < p ≤ 1 and the initial-boundary value problem (2), (3) has the

sufficiently smooth solution U = U(x, t), V = V (x, t), then the semi-discrete scheme
(4) - (6) converges and the following estimate is true

∥u(t)− U(t)∥+ ∥v(t)− V (t)∥ ≤ Ch.

Here ∥·∥ is a discrete analog of the norm of the space L2(0, 1) and C is a positive
constant independent of h.

Note that for (2) type equation with source term and with same nonlinearity result
analogical to this Theorem is received in [24]. The existence, uniqueness and asymptotic
behavior of solution are studied in [24] as well. Note also that the initial-boundary
value problem (2), (3) for the case p = 1 is studied in [22] by finite element method.
Investigated semi-discrete scheme (4) - (6) is using for numerical solution of the problem
(2), (3) by natural discretisation of time derivative and integral as it is given for example
in [21]. Solving the obtaining finite difference scheme we use a algorithm analogical
to [19] for the case p = 1. So, it is necessary to use Newton iterative process [25].
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According to this method the great numbers of numerical experiments are carried out.
These experiments agree with the theoretical results.
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