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Abstract. In this paper the solution of the boundary value problems of the theory of ther-

moelasticity with microtemperatures for the circular ring are considered.The representation

of regular solution for the equations of the theory of thermoelasticity with microtemperatures

by harmonic and metaharmonic functions is obtained, that we use for explicitly solving basic

boundary value problems (BVPs) for the circular ring. The obtained solutions are represented

as absolutely and uniformly convergent series.
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Basic equations. The basic system of equations of the theory of thermoelasticity
with microtemperatures can be written in the form [1,2]:

µ∆u(x) + (λ+ µ)graddivu(x) = βgradu3(x),
k∆u3(x) + k1divw(x) = 0,
k6∆w(x) + (k4 + k5)graddivw(x)− k3gradu3(x)− k2w(x) = 0,

(1)

where λ, µ, β, k, k1, k2, k3, k4, k5, k6 are constitutive coefficients [1]; u(x) is the displace-
ment of the point x = (x1, x2); u = (u1, u2);w = (w1, w2) is the microtemperature
vector; u3 is temperature measured from the constant absolute temperature T0; ∆ is
the Laplace operator.

Problem. Find a regular vector U = (u1, u2, u3, w1, w2), (U ∈ C1(D)∩C2(D), D =
D∪S0∪S1) satisfying in the ring D a system of equations (1) and on the circumferences
S0 and S1 the boundary conditions:

ui(z) = f i(z), ui3(z) = f i3(z), wi(z) = pi(z), i = 0, 1, (2)

where f = (f1, f2), p = (p1, p2), f1, f2, f3 are the given functions on S0 and S1.
The above-formulated problem of thermoelasticity with microtemperature can be

considered as a union of two problems - A and B, where:
Problem A - find in a ring D the solution u(x) of equation (1)1, if on the circum-

ferences S0 and S1 there are given the values of the vector u(z);
Problem B - find in the ring D the solutions u3(x) and w(x) of the system of

equations (1)2 and (1)3, if on the circumferences S0 and S1 there are given the values
of the function u3(z) and of the vector w(z).
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Solution of the Problem B. By virtue of system [(1)2, (1)3] and conditions (2),
we can write [3]:

u3(x) = φ1(x) + φ2(x),

wn(x) = a1∂rφ1(x) + a2∂rφ2(x)− a3
1

r
∂ψφ3(x),

ws(x) = a1
1

r
∂ψφ1(x) + a2

1

r
∂ψφ2(x) + a3∂rφ3(x);

(3)

ui3(z) = f i3(z), win(z) = pin(z), wis(z) = pis(z), i = 0, 1, (4)

where △φ1 = 0, (△+ s21)φ2 = 0, (△+ s22)φ3 = 0, s21 = −kk2 − k1k3
kk7

, s22 = −k2
k6

,

a1 = −k3
k2
, a2 = − k

k1
, a3 =

k6
k7
; k7 = k4 + k5 + k6; k, k2, k6, k7 > 0;

wn = (w · n), ws = (w · s), pn = (p · n), ps = (p · s), n = (n1, n2),

s = (−n2, n1); x = (r, ψ), r2 = x21 + x22.
The harmonic function φ1 and metaharmonic functions φ2 and φ3 are represented

in the form of series in the ring [4,5]:

φ1(x) = X10 ln r + Y10 +
∞∑
m=1

[rm(X1m · νm(ψ)) + r−m(X1m · νm(ψ))],

φ2(x) =
∞∑
m=0

[Im(s2r)(X2m · νm(ψ)) +Km(s2r)(Y2m · νm(ψ))],

φ3(x) =
∞∑
m=0

[Im(s3r)(X3m · sm(ψ)) +Km(s3r)(Y3m · sm(ψ))],

(5)

where Im(sjr) and Km(sjr) are Bessel’s and modified Hankel’s functions of an imagi-
nary argument, respectively; Xkm and Ykm are the unknown two-component constants
vectors, νm(ψ) = (cosmψ, sinmψ), sm(ψ) = (− sinmψ, cosmψ), j = 2, 3, k = 1, 2.

We substitute (5) into (3) and then the obtained expression into (4). Passing to
the limit, as r → R0 and r → R1 for the unknowns Xmk and Ymk we obtain a system
of algebraic equations:

1
Ri
X10 + a2s2I

′
0(s2Ri)X20 + a2s2K

′
0(s2Ri)Y20 =

Ai
10

2
,

a3s3I
′
0(s3Ri)X30 + a3s3K

′
0(s3Ri)Y30 =

Ai
20

2
,

X10 lnRi + Y10 + I0(s2Ri)X20 +K0(s2Ri)Y20 =
Ai

30

2
,

mRm−1
i X1m −mR

−(m+1)
i Y1m + a2s2I

′
m(s2Ri)X2m + a2s2K

′
m(s2Ri)Y2m,

−a3 mRi
Im(s3Ri)X3m − a3

m
Ri
Km(s3Ri)Y3m = Ai1m,

a1mR
m−1X1m + a1mR

m−1Y1m + a2
m
Ri
Im(s2Ri)X2m + a2

m
Ri
Km(s2Ri)Y2m,

+a3s3I
′
m(s3Ri)X3m + a3s3K

′
m(s3Ri)Y3m = Ai2m,

Rm
i X1m +R−m

i Y1m + Im(s2Ri)X2m +Km(s2Ri)Y2m = Ai3m, i = 0, 1,

(6)
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where Ai1m, Ai2m and Ai3m are the Fourier coefficients of the functions pn(z), ps(z)
and f3(z), respectively.

Solution of the Problem A. The solution of the first equation of system (1) with
the boundary condition (2) is represented by the sum

u(x) = v0(x) + v(x), (7)

where v0 is a particular solution of equation (1)1

v0(x) =
β

λ+ 2µ
grad[− 1

s21
φ2(x) + φ0(x)]; (8)

φ0 is a biharmonic function: △φ0 = φ1; v(x) = (v1(x), v2(x)) is the solution of the
homogeneous equation µ△v(x)+(λ+µ)graddivv(x) = 0 which can be found by means
of formula [3]

v1(x) =
∂

∂x1
[Φ1(x)+Φ2(x)]−

∂

∂x2
Φ3(x), v2(x) =

∂

∂x2
[Φ1(x)+Φ2(x)]+

∂

∂x1
Φ3(x), (9)

where ∆Φ1(x) = 0, ∆∆Φ2(x) = 0, ∆∆Φ3(x) = 0;

Φ1(x) =
∞∑
m=1

[

(
r

R1

)m
(Z1m · νm(ψ)) +

(R
r

)m
(Z2m · νm(ψ))] + Z10 ln r,

Φ2(x) =
∞∑
m=0

(
r

R1

)m+2

(Z3m · νm(ψ))

+
∞∑
m=2

(R0

r

)m−2

(Z4m · νm(ψ)) + r ln r(Z41 · ν1(ψ)) +
1

2

(
r

R1

)2

Z20,

(10)

Φ3(x) = −(λ+ 2µ)

µ

∞∑
m=1

(
r

R1

)m+2

(Z3m · sm(ψ)) +
λ+ 2µ

µ

∞∑
m=2

(R0

r

)m−2

(Z4m · sm(ψ))

+
(λ+ 2µ)

µ
r ln r(Z11 · s1(ψ)) + Z40 ln r +

1

2

(
r

R1

)2

Z30,

where Zkm are the unknown two-component vectors, k = 1, 2, 3, 4.
Taking into account (7) and relying on condition (2)I , we can write

vi(z) = Ψi(z), (11)

where Ψi(z) = f i(z) − v0(z) is the known vector. Substituting (10) into (9), the
obtained expressions into (11), we obtain the system of algebraic equations for every
m:

t1mt
m−1Z1m −mt0Z2m − e1(m)tm−1Z3m + a(m)Z4m = η0m,

mt1Z1m −mt0mt
m+1Z2m − t1e1(m)Z3m + b(m)Z4m = η1m,

tm−1Z1m −mt0Z2m − t1q2(m)tm+1 − c(m)Z4m = ς0m,

Z1m + t0mt
m+1 − t1q2(m)Z3m − d(m)Z4m = ς1m, m = 1, 2, ...,

(12)
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where p1 = mu(λ+ 3µ), p2 = mu(λ+ 2µ),

a(1) = p1 lnR0 + 1, a(m) = t0e2(m),m = 2, 3, ...; e1(m) = mu[(λ+ µ)− 2µ],

b(1) = p1 lnR1 + 1, b(m) = t0e2(m)tm−1,m = 2, 3, ...; e2(m) = mu[(λ+ µ) + 2µ],

c(1) = p1 lnR0 + p2, c(m) = t0q1(m),m = 2, 3, ...; q1(m) = mu[(λ+ µ)(m− 2)− 2µ],

d(1) = p1 lnR0+1, d(m) = t0q1(m)tm−1,m = 2, 3, ...; q2(m) = mu[(λ+µ)(m+2)+2µ],

t =
R0

R1

, t0 =
1

R0

, t1 =
1

R1

,mu =
1

µ
; ηim and ς im are the Fourier coefficients of the

functions Ψi
n and Ψi

s, respectively. If m = 1, then Z10 =
∆1

∆
, Z20 =

∆2

∆
,

Z30 = −∆′
1

∆
, Z40 =

∆′
2

∆
, where ∆ =

R2
1 −R2

0

R0R3
1

̸= 0, ∆1 =
1

2R1

(
η00 −

R0

R1

η10

)
,

∆2 =
1

2

(
η10
R0

− η00
R1

)
, ∆′

1 = −1

2

(
ς10
R0

− ς00
R1

)
, ∆′

2 = − 1

2R1

(
ς00 −

R0

R1

ς10

)
.

Numerical solutions. For the numerical solution there is the program. w(x) and
u3(x) are calculated from (3), (5) and (7); u1(x) and u2(x) are calculated from (6),
where v0(x) calculated from (8), (6) and (5), while v(x) from (10) and (12).

Let us consider a particular case with the following conditions:

R0 = 2; R1 = 4; r = 3; ψ = 45◦; λ = 7.28 · 106; µ = 3.5 · 106; k1 = 0, 4;

k2 = 0.3; k3 = 0, 4; k4 = 1, 1; k5 = 0, 5; k6 = 0, 22; k7 = k4 + k5 + k6; β1 = 0.3;

c = 0; d = 2π;

f 0
1 (θ) =

R0

2
(cos θ− 1

4
) · 10−4; f 0

2 (θ) = R0(sin θ+2) · 10−4; f 1
1 (θ) =

R1

2
(cos θ− 1

4
) · 10−4;

f 1
2 (θ) = R1(sin θ + 2) · 10−4; pi1 = Ri(sin(θ)− 1)10−6; pi2 = Ri(sin(θ) + 2)10−6;

f i3 =
1

3
Ri(cos(θ) + 2)10−1; 0 ≤ θ ≤ 2π.

We obtain that:

u1 = 1.432 · 10−4; u2 = −1.11 · 10−3; w1 = 0.534; w2 = −2.472; u3 = 8.656.
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