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ROBUST MEAN-VARIANCE HEDGING IN THE SINGLE PERIOD MODEL
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Abstract. We give an explicit solution of robust mean-variance hedging problem in the

continuous time model for some type of contingent claims.

Keywords and phrases: The min-max problem, mean-variance hedging, robust optimiza-

tion.

AMS subject classification: 60H30, 90C47.

We consider a financial market with one riskless asset of price S0 = 1 and one risky
asset of price process S. We shall fix throughout a canonical, filtered measurable space
(Ω,F , F = (Ft+)t∈T ), and assume that Ω coincides with the space C[0, T ] of all contin-
uous functions, Ft = σ(w(s), 0 ≤ s ≤ t) and F = FT . We shall call admissible system
a collection M consisting of the underlying filtered space (Ω,F , F ) , of a probability
measure P on it, and of a pair of processes (S,W ) , withW F -Brownian motion. These
processes have the dynamics

dSt = bt(S)dt+ σt(S)dWt, (1)

for some progressively measurable functionals b and σ with value in convex compact
subset K ⊂ R×R+.

As proved by Krylov [2] the distribution laws of such type processes constitute weak
compact convex subset PK in the set of probability measures on (Ω,F).

An agent, starting from a capital x, invests an amount πt at any time t in the risky
asset. His wealth process, controlled by Xt, is given by

Xt = x+

∫ T

0

πudSu = x+

∫ T

0

πu(budu+ σudWu), 0 ≤ t ≤ T. (2)

We denote by Π the set of progressively measurable processes π on (Ω,F , F ) , such
that

EP

∫ T

0

|πt|2dt <∞ for all P ∈ PK (3)

and by UK the set of progressively measurable processes (b, σ) on (Ω,F , F ) valued inK.
The robust mean-variance hedging problem (also called robust quadratic minimization
problem) of a contingent claim H(S) is formulated as

min
π∈Π

max
(b,σ)∈UK

E|H(S)− x−
∫ T

0

πtdSt|2, (4)
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which by results of Krylov [2] and by a saddle point existence theorem of Neumann [1]
can be reformulated as

min
π∈Π

max
P∈PK

EP |H(S)− x−
∫ T

0

πtdSt|2

= max
P∈PK

min
π∈Π

EP |H(S)− x−
∫ T

0

πtdSt|2

= max
(b,σ)∈UK

min
π∈Π

E|H(S)− x−
∫ T

0

πtdSt|2.

The mean-variance hedging problem with given coefficients

vθ,σ(x) = min
π∈Π

E|H(S)− x−
∫ T

0

πtσt(θtdt+ dWt)|2, (5)

has solution of the form (see [3])

vθ,σ(x) =
(x− EH(S)ET (−

∫
θdW ))2

EE2
T (−

∫
θdW )

π∗
t = ht − θt/σt(E(H(S)|Ft)−X∗

t ),

where θ = b
σ
, Et(−

∫
θdW )) is Doleans-Dade exponential and h is the integrand of the

stochastic integral representation of E(H(S)|Ft). Suppose that

K = {(b, σ) : θ = b/σ ∈ [θ, θ], σ ∈ [σ, σ]},

where θ ≤ θ, 0 < σ ≤ σ are given numbers. Hence

max
(b,σ)∈UK

min
π∈Π

E|H(S)− x−
∫ T

0

πtdSt|2

= max
(b,σ)∈UK

(x− EH(S)ET (−
∫
θdW ))2

EE2
T (−

∫
θdW )

=
maxσ(x− EH(S)ET (−

∫
θdW ))2

minθ EE2
T (−

∫
θdW )

=
maxσ(x− EH(S)ET (−

∫
θdW ))2

eθ
2T

.

Denote by Ẽ the expectation with respect to P̃ = Et(−
∫
θdW ))P . Then S is the

solution of dSt = σt(S)dW̃t with respect to P̃ . Since

max
σ≤σt≤σ

(x− ẼH(S))2

=

(x−maxσ≤σt≤σ ẼH(S))2 if x < 1
2
(maxσ≤σt≤σ ẼH(S) + minσ≤σt≤σ ẼH(S)),

(x−minσ≤σt≤σ ẼH(S))2 if x > 1
2
(maxσ≤σt≤σ ẼH(S) + minσ≤σt≤σ ẼH(S)),
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the minimax problem reduces to the solution of problems

max
σ≤σt≤σ

ẼH(S) and min
σ≤σt≤σ

ẼH(S).

If H is a terminal functional i.e. H(S) = g(ST ) for continuous function g(s) satisfying
linear growth condition, v(t, s) = maxσ≤σt≤σ Ẽt,sg(ST ) satisfies the Barenblatt equation

vt(t, s) +
1

2
σ vss(t, s)

+ − 1

2
σvss(t, s)

− = 0, v(T, s) = g(s)

and

σ∗(t, s) =

{
σ if vss(t, s) > 0,

σ if vss(t, s) < 0.

Similarly for the value function v(t, s) = minσ≤σt≤σ Ẽt,sg(ST ) we have the equation

vt(t, s) +
1

2
σ vss(t, s)

+ − 1

2
σvss(t, s)

− = 0, v(T, s) = g(s)

and

σ∗(t, s) =

{
σ if vss(t, s) > 0,

σ if vss(t, s) < 0.

Hence we have proved
Theorem 1. The saddle point (π∗, θ∗, σ∗) of the minimax problem is defined by the

equation

θ∗t = θ,

σ∗
t =


σ if vss(t, S

∗
t ) > 0, x < 1

2
(v(0, S0) + v(0, S0)),

σ if vss(t, S
∗
t ) < 0, x < 1

2
(v(0, S0) + v(0, S0)),

σ if vss(t, S
∗
t ) > 0, x > 1

2
(v(0, S0) + v(0, S0)),

σ if vss(t, S
∗
t ) < 0, x > 1

2
(v(0, S0) + v(0, S0)),

π∗
t = ht − θ∗t /σ

∗
t (Ẽ(H(S∗)|Ft)−X∗

t ).

Corollary 1. If g is a convex function then the optimal pair is

(θ∗t , σ
∗
t ) =

{
(θ, σ) if x < 1

2
(Eg(σWT ) + g(σWT )),

(θ, σ) if x > 1
2
(Eg(σWT ) + g(σWT )).
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