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Abstract. We give an explicit solution of robust mean-variance hedging problem in the
continuous time model for some type of contingent claims.
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We consider a financial market with one riskless asset of price S° = 1 and one risky
asset of price process S. We shall fix throughout a canonical, filtered measurable space
(Q, F,F = (Fiy)ier), and assume that €2 coincides with the space C[0, T of all contin-
uous functions, F; = o(w(s),0 < s <t) and F = Fr. We shall call admissible system
a collection M consisting of the underlying filtered space (2, F, F') , of a probability
measure P on it, and of a pair of processes (S, W) , with W F-Brownian motion. These
processes have the dynamics

dS, = b,(S)dt + o(S)dW,, (1)

for some progressively measurable functionals b and o with value in convex compact
subset K C R X R,.

As proved by Krylov [2] the distribution laws of such type processes constitute weak
compact convex subset Px in the set of probability measures on (2, F).

An agent, starting from a capital z, invests an amount 7; at any time t in the risky
asset. His wealth process, controlled by X, is given by

T T
X, =z +/ TudSy, = T +/ Tu(bydu + 0, dW,,), 0 <t <T. (2)
0 0

We denote by II the set of progressively measurable processes 7 on (2, F, F') , such
that

T
EP/ |m|2dt < 0o for all P € Px (3)

0
and by Uk the set of progressively measurable processes (b, o) on (2, F, F') valued in K.

The robust mean-variance hedging problem (also called robust quadratic minimization
problem) of a contingent claim H(S) is formulated as

T
min max E|H(S)—x—/ T dSy|?, (4)
0

m€ell (b,o)eUk
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which by results of Krylov [2] and by a saddle point existence theorem of Neumann [1]
can be reformulated as

T
min max E7|H(S) —x—/ T d S, |?
0

well PEPk

T
= max min EX|H(S) — z —/ 7 dSy|?
0

PePy well

T
= max minE|H(S)—x—/ 7 dSy|?.
0

(byo)eUg mell

The mean-variance hedging problem with given coefficients

mell

T
Vpo(x) =min E|H(S) —x — / mor(Opdt + dW)[?, (5)
0

has solution of the form (see [3])

(x — EH(S)Er(— [ 0dW))?
EE2(— [ 6dW)

™ = hy = 0i/o(E(H(S)|Fy) — X)),

Voo () =

where § = 2, &,(— [ 0dW)) is Doleans-Dade exponential and A is the integrand of the
stochastic integral representation of E(H (S)|F;). Suppose that

K ={(bo):0="b/c€[0,0],0 € [0,7]},

where 6 < g, 0 < g <7 are given numbers. Hence

T
max minE|H(S)—x—/ T dS, |
0

(b,o’)GUK mell
(e — BH(S)Ex(~ [ 04W))?
= max
voes  BEX(— [ W)

max,(z — EH(S)Er(— [ 0dW))?
ming EEA(— [ 6dW)
_ max,(z — EH(S)Er(— [ 0dW))?

2
ed’T

Denote by E the expectation with respect to P = &(— [6dW))P. Then S is the
solution of dS; = 04(S)dW,; with respect to P. Since

max (z — EH(S))?

0<0t<0

(z — maxXy<g, <z EH<S))2 if x < %(maxgéatﬁﬁ EH(S) + ming <o, <5 EH(S))7

(z — ming<y <z EH(S))2 if x> %(ma’XQSUtSE EH(S) + ming <, <z EH(S))v
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the minimax problem reduces to the solution of problems

max EH(S)and min EH(S).

o<ot<o o0<0t<o

If H is a terminal functional i.e. H(S) = g(Sr) for continuous function g(s) satisfying
linear growth condition, o(t, s) = max,<q,<z £t sg(St) satisfies the Barenblatt equation

1 1
—T Ugs(t,5)T — §g635(t, s)” =0, v(T,s) = g(s)

Et(t7 8) + 2

and

ss(t,8) < 0.

Similarly for the value function v(t, s) = miny<,,<z Et,sg(ST) we have the equation

U*(t’ 3) — {z 2; zss(? 3) > 0,

1 1
v(t, 8) + 3¢ vt )" — 55253(75, s)” =0, v(T,s) = g(s)

and

Hence we have proved
Theorem 1. The saddle point (7*,0*,0*) of the minimaz problem is defined by the
equation

o =0,
T if Us(t,S7) >0, z < 1(v(0,S) +v(0,5)),
L) o if Tt SF) <0, x < 5(u(0,5) +70(0, S)),
“CT N g if vl(t.S) > 0, 2 > Lw(0, Sy) + (0, o)),
7 if v(t,S;) <0, x> 5(v(0,S50) 4+ 0(0,5)),

w = he — 0] Jo] (E(H(S™)|F) — X;).

Corollary 1. If g is a convex function then the optimal pair is

0.0ty = 4 &) if @ <5(Eg(@Wr) + g(aWr)),
ot (0.0) if x> 3(Eg@@Wr)+ g(cWr)).
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