Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 26, 2012

ON ONE NONLOCAL BOUNDARY VALUE PROBLEM OF STATICS OF THE PLANE THEORY OF ELASTIC MIXTURES

Svanadze K.

Abstract. In the present work for two-dimensional homogeneous equations of statics of the linear theory of elastic mixture we study Bitsadze-Samarski nonlocal problem [1], in the case of finite simply-connected isotropic domain.

Keywords and phrases: Bitsadze-Samarski nonlocal boundary value problem, elastic mixtures.

AMS subject classification: 73C35.

Some auxiliary formulas and operators. In the two-dimensional case the basic homogeneous equations of the theory of elastic mixtures have the form [2]

$$a_1 \Delta u' + b_1 \operatorname{grad} \operatorname{div} u' + c \Delta u'' + d \operatorname{grad} \operatorname{div} u'' = 0,$$

$$c \Delta u' + d \operatorname{grad} \operatorname{div} u' + a_2 \Delta u'' + b_2 \operatorname{grad} \operatorname{div} u'' = 0,$$
(1)

where $u' = (u_1, u_2)^T$ and $u'' = (u_3, u_4)^T$ are partial displacements depending on the variable x_1 and x_2 ; a_1 , a_2 , c, b_1 , b_2 and d are the known constants characterizing the physical properties of the mixture and satisfying the definite conditions (inequalities) [2].

Let $D^+(D^-)$ be a finite (infinite) two-dimensional domain bounded by a smooth

contour S. Suppose that $S \in C^{1,\beta}$, $0 < \beta \leq 1$, i.e. S is a Lyapunov curve. A vector-function $u = (u_1, u_2, u_3, u_4)^T$ defined in the domain D^+ (D^-) is called regular if $u \in C^2(D^{\pm}) \cap C^{1,\alpha}(\overline{D^{\pm}}), 0 < \alpha < \beta \leq 1$. In the case of the domain D^- we assume, in addition, the following conditions at infinity $u(x) = O(1), |x|^2 \frac{\partial u}{\partial x_h} = O(1),$ k = 1, 2 to be fulfilled with $|x|^2 = x_1^2 + x_2^2$.

Note that for a regular solution of equation (1) we have the Green formula [2]

$$\int_{S} uNuds = \int_{D^{+}} N(u, u)dx,$$
(2)

where N(u, u) is a positively defined quadratic form, the equation N(u, u) = 0 admits solution u = const; Nu is the pseudo-stress vector [2].

The following assertion holds [2].

Theorem 1. Let $S \in C^{1,\beta}$, $0 < \beta \leq 1$ and let u be a regular solution of equation (1) in D^+ . Then

$$u(x) = \frac{1}{2\pi} \int_{S} ([N_y \phi(x-y)]' u^+(y) - \phi(x-y) [Nu(y)]^+) d_y S,$$

where $\phi(x - y)$ is the basic fundamental matrix of equation (1), $x = (x_1, x_2)$ and $y = (y_1, y_2)$

$$\phi(x-y) = \operatorname{Re}[m\ln(z-\zeta) + \frac{1}{4}n\frac{\overline{z}-\overline{\zeta}}{z-\zeta}], \quad z = x_1 + ix_2, \quad \zeta = y_1 + iy_2; \quad (3)$$

$$[N_y\phi(y-x)]' = \frac{\partial}{\partial s(y)} \operatorname{Im}\left[E\ln(z-\zeta) - \frac{1}{2}\varepsilon\frac{\overline{z}-\overline{\zeta}}{z-\zeta}\right].$$
(4)

m, n and ε are the (4×4) known constant matrices, E is the (4×4) unit matrix, $\frac{\partial}{\partial s(y)} = n_1(y) \frac{\partial}{\partial y_2} - n_2(y) \frac{\partial}{\partial y_1}$, $n = (n_1, n_2)^T$ is the unit vector of the outer normal. The first BVP is formulated as follows: Find a regular solution to the equations

The first BVP is formulated as follows: Find a regular solution to the equations (1) in D^{\pm} which satisfies the boundary condition.

$$u^{\pm}(y) = f(y), \quad y \in S, -\text{Problem} \quad (I)_f^{\pm};$$

where f is a sufficiently smooth vector-function [2].

The following statement is valid.

Theorem 2. Let $s \in C^{1,\beta}$, $0 < \beta \leq 1$. Then the homogeneous problems $(I)_0^{\pm}$ have no nontrivial regular solutions.

Using the way described in [3] we get

$$G(x,y,I^+) = \phi(x-y) - \frac{1}{\pi} \int_S \phi(x-\eta)g(\eta,y)d_\eta S, \quad (x,y) \in (\overline{D^+} * D^+) \setminus \Lambda$$

is the Green matrix for domain D^+ of the problem $(I)^+$, where the matrix $\phi(x-y)$ is defined by (3), $g(\eta, y)$ represents unique solution of the second kind Fredholm integral equation

$$g(t,y) + \frac{1}{\pi} \int_{s} N_t \phi(t-\eta) g(\eta,y) d_\eta S = N_t \phi(t-y), \quad t \in S, \quad y \in D^+;$$

 $\frac{N_x\phi(x-y)}{D^+} * \overline{D^+}$ is transpose of the matrix (4) (see. [2]), and Λ is a diagonal product

Finally, let us note that the unique solution of the $(I)_f^+$ problem $(f \in C^{1,\alpha}(S), S \in C^{1,\beta}, 0 < \alpha < \beta \leq 1)$ is given by the formula

$$U(x) = \frac{1}{2\pi} \int_{S} [N_y G(x, y, I^+)]' f(y) d_y S, \quad x \in D^+.$$
(5)

Statement of the problem and the method of its solving. In the known work of A. V. Bitsadze and A. A. Samarski [1], new mathematical problem with nonlocal boundary conditions are stated and studied.

In this paper of the Bitsadze-Samarski nonlocal boundary value problem for (1) equation in the finite simply-connected isotropic domain D^+ is considered. To solve the problem we use the method developed in [1] and the results given in the first section of the present work.

Let $S \in C^{1,\beta}$, $0 < \beta \leq 1$ be boundary of the domain D^+ , and let Γ be a part of the S. Suppose the curve γ lies is D^+ and $\gamma = I(\Gamma)$ is a diffeomorphism between γ and Γ .

Let us consider the following nonlocal boundary value problem: Find a regular solution of equation (1) in the D^+ which satisfies the boundary conditions

$$U(y) = F(y), \quad y \in S \setminus \Gamma; \quad U|_{\gamma} = U|_{\Gamma}; \tag{6}$$

where $F \in C^{1,\alpha}(S \setminus \Gamma)$, $0 < \alpha < \beta \leq 1$, is a given vector-function.

It is evident that problem (6) represents first generalized problem of statics in D^+ . Using the Green formula (2) it is easy to prove

Theorem 3. Problem (6) has at most one regular solution.

Let us prove the existence of solution of problem (6).

Suppose that $U|_{\Gamma} = h(y)$, (h(y) is an unknown vector-function). From condition $U|_{\gamma} = U|_{\Gamma}$ we get $U|_{\gamma} = h(\eta), \eta \in \Gamma$.

Due to formula (5) and condition (6) for determining h we obtain the following Fredholm integral equation of the second kind

$$h(\eta) - \frac{1}{2\pi} \int_{\Gamma} [N_y G(x, y, I^+)]'_{\gamma} h(y) d_y S =$$

=
$$\frac{1}{2\pi} \int_{S \setminus \Gamma} [N_y G(x, y, I^+)]'_{\gamma} F(y) d_y S, \quad \eta \in S.$$
(7)

Hence problem (6) is reduced to equation (7). On the other hand, by Theorem 3 equation (7) has a unique solution.

Thus, problem (6) is solvable and the solution is representable by formula (5), where f = F on $S \setminus \Gamma$ and f is a solution of equation (7) on Γ .

REFERENCES

1. Bitsadze A.V., Samarski A.A. On some simplified generalization of the linear elliptic problems. (Russian) *Dokl. AN SSSR.*, **185**, 4 (1969), 739-740.

2. Basheleishvili M.O. Two-dimensional boundary value problems of statics of the theory of elastic mixtures. *Mem. Differ. Equ. Math. Phys.*, **6** (1995), 59-105.

3. Natroshvili D.G., Jagmaidze A.A., Svanadze M.G. Some problems in the linear theory of elastic mixtures. (Russian) *Tbilis. Gos. Univ., Tbilisi*, 1986.

Received 3.05.2012; revised 25.09.2012; accepted 23.11.2012.

Author's address:

K. Svanadze A. Tsereteli Kutaisi State University 59, Tamap Mepe St., Kutaisi 4600 Georgia E-mail: kostasvanadze@yahoo.com