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ON ONE INTEGRAL EQUATION WITH SINGULARITY ARISING FROM
TRANSPORT THEORY

Shulaia D.

Abstract. The Chandrasekhar’s equation describing the scattering of polarized light in

the case of a combination of Rayleigh and isotropic scattering with arbitrary photon survival

probability in an elementary scattering is considered. The Hilbert-Shmidt expansion theorem

in terms of eigenvectors of discrete and continuous spectra of the corresponding characteristic

equation is represented.
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Consider the vector equation of radiation transfer of the polarized light ( see [1,2])
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τ ∈ (−∞,+∞), µ ∈ (−1,+1),

where Q(µ) is the square matrix
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∥∥∥∥ ,
ω ∈ (0, 1) is the probability in an elementary scattering, c ∈ (0, 1) is a parameter
which characterize the degree of the deviation the law of scattering from the Rayleigh.
The symbol T denotes the transpose. Fourier transformation of the equation (1) with
respect to τ gives us the following integral equation

(ν − µ)ψ̃ν(µ) =
ων

2
Q(µ)

∫ +1

−1

QT (µ′)ψ̃ν(µ
′)dµ′ + f(µ), (2)

where f(µ) is a given matrix function and ν is a parameter. It is seen that, if f(µ) = 0,
then we obtain corresponding of(1) characteristic equation, corresponding to (1)

(ν − µ)ψν(µ) =
ων

2
Q(µ)

∫ +1

−1

QT (µ′)ψν(µ
′)dµ′. (3)

The values of ν for which (3) has nonzero solutions, are the eigenvalues of the
equation. The set of all eigenvalues will be denoted by S[ν]. The discrete spectrum of
(3) consists of two real points {±ν0}, which correspond to the two eigenfunctions (see
e.g. [2])

ψ±ν0(µ) =

∥∥∥∥∥ ψ(1)
±ν0(µ)

ψ
(2)
±ν0(µ)

∥∥∥∥∥ .
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There a continuum of values of ν, namely −1 ≤ ν ≤ 1, for which (3) has a solution in
the distributional sense: (cf.[3])

ψν(µ) =
ων

2
(ν − µ)−1M(ν, µ) + δ(ν − µ)

(
E − ων

2

∫ +1

−1

(ν − µ′)−1M(ν, µ′)dµ′
)
,

where

M(ν, µ) = Q(µ)QT (ν) +
ων

2
Q(µ)K(ν)QT (ν)

(
E − ων

2
K(ν)

)−1

,

K(ν) =

∫ +1

−1

(QT (µ′)−QT (ν))(ν − µ′)−1Q(µ′)dµ′,

E is the unit matrix and δ is the Dirac function.
The eigenfunctions of (3) obeys the following orthogonality condition∫ +1

−1

µψν(µ)ψν′(µ)dµ = D(ν, ν ′)N(ν),

where

D(ν, ν ′) =


0, when ν ̸= ν ′,

δ(ν − ν ′), when either ν or ν ′ are continuous,

δij, when both ν = νi, ν ′ = νj are discrete.

N(ν) is the normalization matrix and δij is the Kronecker symbol.
The set of eigenfunctions is complete and hence it obeys the relation

µ

∫
S[ν]

ψν(µ)dΓ(ν)ψν(µ
′) = δ(µ− µ′)E,

where the integral on the left-hand side is the spectral integral and

dΓ(ν) =

N
−1(ν)dν, when ν is a continuum eigenvalue,∑

j

δ(ν−νj)
N(νj)

dν, when ν is not a continuum eigenvalue,

here, the sum on the right-hand side is over all discrete eigenvalues.
For the equation (2) we can prove the following statements.
Theorem 1. If ν∈̄S[t], then equation (2) has a unique solution ψ̃ν ∈ H∗ for any

f(µ). The solution of this equation is given by formula

ψ̃ν(µ) =

∫
S[t]

t

t− ν
ψt(µ)dΓ(t)

∫ +1

−1

ψt(µ
′)f(µ′)dµ′. (4)

Theorem 2. Let ν = ν0 be an eigenvalue of (3). Then equation (2) is solvable, if
and only if the function f satisfies the condition∫ +1

−1

ψν0(µ)f(µ)dµ = 0.
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Provided these conditions are satisfied, then solution of (2) may be written as

ψ̃ν0(µ) = c0ψν0(µ)−
1

2
N−1ψ−ν0

+

∫ +1

−1

t

t− ν
ψt(µ)(µ)dΓ(t)

∫ +1

−1

ψt(µ
′)f(µ′)dµ′,

where c0 is an arbitrary constant.
Theorem 3. If ν = t0 where t0 ∈] − 1,+1[. Then equation (2) is solvable, if and

only if the function f satisfies the condition∫ +1

−1

ψν(µ
′)f(µ′)dµ′ = 0.

Provided these conditions are satisfied, equation (2) has one and only one solution and
this solution may be given by (4).
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