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Abstract. In the present article finite-difference solution of antiplane problems of elastic-

ity theory for composite (piece-wise homogeneous) bodies weakened by cracks is presented.

The differential equation with corresponding initial boundary conditions is approximated by

finite-differential analogies in the rectangular quadratic area. Such kind set of the problem

gives opportunity to find directly numerical values of shift functions in the grid points. The

suggested calculation algorithms have been tested for the concrete practical tasks. The results

of numerical calculations are in a good approach with the results of theoretical investigations.
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Introduction. Study of boundary value problems for the composite bodies weak-
ened by cracks has a great practical significance. Mathematical model investigated
boundary value problems for the composite bodies weakened by cracks in the first ap-
proximation can be based on the equations of antiplane approach of elasticity theory
for composite (piece-wise homogeneous) bodies. When cracks intersect an interface or
penetrate it at all sorts of angle on the base of the integral equations method is stud-
ied in the works [1]-[7]. In the present article the problems for composite (piece-wise
homogeneous) orthotropic bodies weakened by cracks is studied by finite-difference
method. At the initial stage the problem is studied for homogenous body and fur-
ther for composite (piece-wise homogeneous) bodies. Besides theoretical research of
the above mentioned tasks our aim is to construct and develop rapidly convergent
algorithm and numerical method.

Statement of the problem. Given a distorted harmonic equation, with 2n× 2n
size, in square Ω = Ω1 ∪ Ω2 (Ω1 and Ω2 areas, see Fig. 1)

∂2wk(x, y)

∂x2
+ λ2k

∂2wk(x, y)

∂y2
= 0, (x, y) ∈ Ωk, k = 1, 2. (1)

a) On the curves of the crack L+
x and L−

x tangent stresses are given (Fig. 1) while
end points of the crack coherence conditions are given

τ (±)
yz = b

(k)
44

∂wk(x,±0)

∂y
= q

(±)
k (x), x ∈ Lk, L1 = [0; 1], L2 = [−1; 0], (2)

w2(−1,+0) = w2(−1,−0), w1(1,+0) = w1(1,−0); (3)

b) on the axis y (on the dividing line) the condition of continuity is fulfilled
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w1(0; y) = w2(0; y), y ∈ [−n, n], y ̸= 0, (4)

τ (1)xz = τ (2)xz , or b
(1)
55

∂w1(0; y)

∂x
= b

(2)
55

∂w2(0; y)

∂x
; (5)

c) on the side pieces of the square Ω we have

w2(−n, y) = 0 and w1(n, y) = 0, y ∈ [−n, n],

w2(x,±n) = 0, x ∈ [−n, n], and w1(x,±n) = 0, x ∈ [0, n].
(6)

Fig. 1.

In the above mentioned equations λ2k =
b
(k)
44

b
(k)
55

, b
(k)
44 , b

(k)
55 , are elastic constants, which

have been taken from the Hooke’s law, q
(±)
k (x) is a function of Holder’s class, In partic-

ular, if we have isotropic case b
(k)
44 = b

(k)
55 = µk, λk = 1, numerical parameter λk = 1,

where µk is module of displacement, k = 1, 2;

Finite-difference method. Primarily suppose that n,N ∈ N (2n is a length of
the side pieces of the square, 2N is a number of dividing points on the crack line),
h1 = h2 = h = 1/N, N ∈ N. steps in the directions x and y are equal, that is
there is a regular quadratic grid Ωh = {(xi, yi), xi = ih, yj = jh, i, j = [−nN, nN ]},
For boundary value problem (1)-(6) a different scheme is the following: differential
operator in the basic (1) equation is approximated by five point template with O(h2)
accuracy, while differential operator in (2) and (5) equations are approximated by five
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point template with O(h) accuracy Wk,i,j, For finding grid function W the following
iteration method is used:

W
(m+1)
k,i,j =

1

2(1 + λ2k)

[
W

(m)
k,i+1,j +W

(m)
k,i−1,j +W

(m)
k,i,j+1 +W

(m)
k,i,j−1

]
;

a) everywhere, excepting crake’s line and dividing line (border) we have

j ̸= 0, then i = −(nN − 1),−(nN − 2), · · · , (−1), 0, 1, · · · , (nN − 2), (nN − 1),

j = 0, then i = −(nN − 1),−(nN − 2), · · · ,−(N + 2),−(N + 1),

i = (N + 1), (N + 2), · · · , (nN − 2), (nN − 1).

b) On the lines of cracks

W
(m+1)
k,i,(+0) =W

(m)
k,i,(+1) −

h

b
(k)
44

q
(+)
k,i and W

(m+1)
k,i,(−0) = W

(m)
k,i,(−1) −

h

b
(k)
44

q
(−)
k,i ,

i = −N,−(N − 1), · · · , (−1), 0, 1, · · · , (N − 1), N ;

Also at the ending points of the crack it is necessary to take into consideration the
following fitting condition (matched condition)

q
(+)
N = q

(−)
N , q

(+)
(−N) = q

(−)
(−N);

and in the point (x0, y0) condition of consistency

q
(+)
(1) (0)

b
(1)
44

≡
q
(+)
(2) (0)

b
(2)
44

,
q
(−)
(1) (0)

b
(1)
44

≡
q
(−)
(2) (0)

b
(2)
44

,

c) on the dividing line (border)

W
(m+1)
1,0,j = W

(m+1)
2,0,j =

b
(2)
55W

(m)
2,−1,j + b

(1)
55W

(m)
1,1,j

b
(2)
55 + b

(1)
55

;

j = −N,−(N − 1), · · · , (−1), 1, · · · , (N − 1), N ;

W
(0)
k,i,j = 0, m = 0, 1, 2, · · · .
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