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ENSURING THE BOUNDARY CONDITION OF FACE SURFACES FOR
NON-SHALLOW SHELLS

Meunargia T.

Abstract. 1. Vekua suggested a simple method ensuring the boundary conditions of the face
surfaces for shallow shells. In this paper the result is generalized for non-shallow shells.
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1. Using the vector and tensor notations, the equilibrium equation of the continuous
medium and the stress-strain relations (Hook’s Law) can be written in the form (see

[1]):
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where ¢ is the discriminant of the metric quadratic form of the space, 7% are con-
travariant constituents of the stress vector, ¥ is the volume force, V, are covariant
derivatives with the space coordinates z¢, U is the displacement vector, A\ and j are
Lame’s constants, ® denotes the tensor product, R; = ;R and R’ are covariant and

contravariant basis vectors of the curvilinear coordinate system z!, 22, 3 moreover

R;-R'=0/, ¢g;,=R;-R;, ¢ =R'-R’/, R'=g"R,;.

For the 3-D shell-type elastic bodies €2 is more convenient to consider the coordinate
system which is normally connected with the midsurface S. This means that the radius-
vector R of any point of the domain {2 can be represented in the form

R(z', 2% 2%) = r(2', 2*) + 2°n(z', 2?), —h<a2* <h,

where r and n are respectively the radius vector and the unit vector of the normal
of the mudsurface S(z3 = 0) and z',2? are the Gaussian parameters of the S, h is
semi-thickness of shall (2.

The covariant and contravariant basis vectors R; and R of the surface S (23 =
const) and the corresponding bases vector r; and r’ of the midsurface S(x* = 0) are
connected by the following relations:
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(a:S =1x3), (a,aq=1,2).

By shallow shells I. Vekua meant 3-D shell-type elastic bodies satisfying the follow-
ing conditions:

Ragray Ragra, (R3:R3:r3:r3:n).

In the sequel, under non-shallow shells we mean elastic bodies from which R, and R®
have the form (3).

2. There are many different methods of reducing 3-D problem of theory of elasticity
to 2-D ones of the theory of shells. In the present paper we realize the reduction by the

method suggested by I. Vekua. Since the system of Legendre polynomials P, <"%3) is

complete in the interval [—1, 1] for (1) and (2) we obtain the equivalent infinite system
of 2-D equations
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or in the form
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where V, are covariant derivatives with the parameters z!, 22 and
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Consider the first N + 1 equations (4) and (5), and assume that U =0 if m > N,
where N is non-negative integer (approximation of order N). Then we shall have
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There expressions satisfy boundary conditions on lateral surfaces ¥ of a shell €2,
but the boundary conditions on face surfaces z3 = +h
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are not, in general, satisfied.

Now arises the problem: To find vector V (z!, 2%, 2?) satisfying the following con-
ditions:

173 =, (@8 = xh);

0 V=0, B iU+ V) =0.m < N

3.Ve, 30> 0= |V(z',2%,2%)| <ecand |6/(V)| <e,if —h+§ <a® < h-—6.

For shallow shell this vector is constructed by I. Vekua. For non-shallow shell
analogous vector has the form

a3 a3 a3 a3
V =92 [Mk: (Pk+2% - Pk%) + My (Pk+3% - Pk“f)} ;
where k > N + 5 and
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