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ORDINARY INTEGRO-DIFFERENTTAL EQUATIONS BY ALTERNATING TO
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Abstract. In this work we consider the problems connected with numerical realization of
the alternating to perturbation technique method for boundary value problems of ordinary
second order linear integro-differential equation. The use of numerical processes caused the
error between exact and approximate solutions for which is getting an estimate. Then by this
procedure are solved approximately some examples with known exact solutions by which it
is possible to investigate the influences of round-of errors and numerical methods.
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Let us consider the non-homogenous operator equation

Lu+eMu = f, (1)

where L, M are linear operators defining in the corresponding normalized space and
there exist the following inverse operators L™! and (L +eM)~! parameter € € [—1, 1].
For solution of (1) we used the following expression

u(@) =Y ua) + (1=7) Y Pule)wnl(a), (2)

k=

0
where {Py(e)} is Legendre polynomial system, v(x) and wy(x) are unknown coetffi-
cients, 7 is the arbitrary parameter.

As it’s well known when v = 1 by series (2) it’s possible from (1) to define the
explicit processes which are named as the perturbation technique or asymptotic method
of solution of equation (1). The difficulties are related with the numerical realizations
and other applications of asymptotic methods investigated by many authors (see i.e.
[1-3]).

Below we consider the case when v = 0. We have

u(z) =Y Pu(e)up(z), e€[-1,1]. (3)
Then from (1) it follows:

Luwy(x) - Po(e) + Lwn(x) - Pi(e) + -+ +
+Muwqg(x) - ePy(e) + Mwy(x) -ePi(e) + - = f(x)
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or, using the well-known identity for Legendre polynomials

n n+1

P,(e) = e
ebn(e) = 5 g P + 5 7

Pn+1 (8)

we have (for details see [4; 5]):
L’LU()(ZL‘) . P()(g) + Lwl(as) . Pl(E) + LUJQ([E) . P2(€) —+ 4 MIUQ(QT) . P1(€)
Hmm@y(?MQ+EEQO+WMM@(%HQ+§%@0+~~:f@L

3 b}

1
Lwo + ngl = f(.%‘),

4
Lk (x) + M1 (2) + L M () = 0, k> 1 W
WL ok — 1 Wi—1\T 2k’+3 Wg+1\T) = U, =~ 1.
If we denote by = Lwy(x); tp = Mwy(x); k=0;1;2;3;---, we have:
1
bo + §t1 =/,
. kol (4a)
_|_
b + ——ti_ tee1=0;, k=1;2;3;---.
k+2k—1k1+2k+3k+1 ) ) &y 9y
Instead of (4a) we choose the finite number of operator equations: k = 0,1,--- ,2n.
These systems split into two subsystems:
bk, Lok bk, Lok
1 2
bo+§t1=f b1+to+gt2=0
2 3 3 4
b =1 —ty =0 b =1 —t, =0
2+31+72 3+52+94
2k 2k +1 2k — 1 2k
b top_ —t =0 bo— —— ok ——to, =0
2k+4k_12k 1+4k+32k+1 2k 1+4k_32k2+4k+12k
bon b o 2t 20 byt T 2T R =0
2n—2 dn — 5 2n—3 dn — 1 2n—1 — 2n—3 dn — 7 2n—4 dn — 3 2n—2 —
2n 2n —1
ban + p— 1t2n—1 0; bon—1 + y— 3t2n—2 0
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For n =0,1,2,3 we have:

n=>0 n=1 n=2

1 1
wo =y + 51/)5 + 5%

1 3
wo = + §¢5 wy = —3 — g¢7

n=23

1 1 1
wo =11 + §1/)5 + g% + ?1?13

3 3
wy = —¢3 - g¢7 - ?/’11
4

2
Wo = g% + ?¢9

_ 2 4 2 4
wo =y | W= s wy = 51/15 + §2/19 ws = —g¢7 - 51/111
2
_ 2 8 24
wy = s __Zz _° o
3 ws 5¢7 Wy 35@/19 + 77%3
8 6
Wa = gwg Ws = —@wn
16
We = ﬁww
where
o = f;
1= L7 f;
o, = Moy,
. k>1.
Vo1 = L™ o,

Let us now consider the following linear ordinary integro-differential equation of
second order with homogeneous boundary conditions of Dirichlet type

1

@) + glau(e) + = [ Klz,u(tide = flz),

where

g(x) = ay (1 + 2%) + ay(1 +sin(rx)), K(z,t) ="M,

The above methodology can be realized when the exact solution is

uw(x) = ag - x(l — ) + oy - sin(mx)

and

fl@)=(2-az+ay- 7r2sin(7rx)) + (a1(1 + 2%) + az(1 + sin(wz)))

m+1

X (o - 2(1 — ) + aysin(mz)) + ¢ (ag (="t 43 e") + ay (M)> .
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We must find approximately L;l and M), operators, h is a mesh size. For this purpose
we used second difference quotients and Simpson’s complete rule, mh = 1.

Table 1
o 0 0 0 1 1 1 1 1
1e%) 0 1 1 0 0 1 1 1
fo %! 1 0 1 0 1 0 1 1
oy 0 1 1 1 0 1 0 1

Max N=10 | 2.E-07 | 6.E-03 | 6.E-03 | 7.E-03 | 2.E-07 | 6.E-03 | 1.E-07 | 6.E-03
of N=100 | 2.E-11 | 6.E-05 | 6.E-05 | 7.E-05 | 2.E-11 | 6.E-05 | 1.E-11 | 6.E-05
errors | N=1000 | 1.E-12 | 6.E-07 | 6.E-07 | 7.E-07 | 5.E-13 | 6.E-07 | 2.E-13 | 6.E-07

Table 2
aq 0 1 0; 1 0 0; 1 1
s 0 0 1 0 0; 1 1
s 0;1 | 0,1 | 01 1 1 1
o 1 1 1 0 0 0

Max N=10 | 8.E-03 | 7.E-03 | 6.E-03 | 2.E-07 | 2.E-07 | 1.E-07
of N=100 | 8.E-05 | 7.E-05 | 6.E-05 | 2.E-11 | 2.E-11 | 1.E-11
errors | N=1000 | 8.E-07 | 7.E-07 | 6.E-07 | 1.E-12 | 5.E-13 | 2.E-13

We emphasize that when ay = a4 = 0, the differences between exact and approxi-
mate solutions are stipulated by round-off errors.
This article is elaborated by supervision of my teacher Prof. T. Vashakmadze.
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