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Abstract. Galerkin finite element method for the approximation of a system of nonlinear

integro-differential equations describing the process of penetrating of a magnetic field into

a substance is studied. Initial-boundary value problem with mixed boundary conditions is

investigated. The convergence of the finite element scheme is proved. The rate of convergence

is given too.
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Mathematical model of the process of penetrating of magnetic field in the substance
by Maxwell’s system is described [1]. In [2] it was shown that this system can be
rewritten in the following form:
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where W = (W1,W2,W3) is the vector of the magnetic field and the function a = a(σ)
is defined for σ ∈ [0,∞).

If the magnetic field has the form W = (0, u1, u2) and u1 = u1(x, t), u2 = u2(x, t),
then we have
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Note that the (1) type model is complex, but special cases of it were investigated [2]-
[8]. The existence of global solutions to initial-boundary value problems for such models
has been proven in [2]-[5],[8] by using some modifications of the Galerkin method and
compactness arguments [9],[10]. For solvability and uniqueness properties of initial-
boundary value problems for (1) type models, see [7] as well as many other scientific
works.

In [6] some generalization of equations of type (1) is proposed. In this case if the
magnetic field again has the form W = (0, u1, u2) and u1 = u1(x, t), u2 = u2(x, t), then
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the same process of the magnetic field penetrating into the material is modeled by the
following system of integro-differential equations:
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Note that asymptotic behavior of the initial-boundary value problems for (1) and
(2) type models were studied in many works (see, for example, [8], [11]-[17]). In [12],
[15], [16], [18]-[21] and in a number of other works difference schemes for (1) and (2)
type models were investigated. Difference schemes and finite element approximations
for a nonlinear parabolic integro-differential scalar model similar to (1) were studied
in [21] and [22]. Finite difference schemes and finite element approximations for the
scalar equation of (2) type with a(σ) = 1+σ were studied in [15] and [23], respectively.
The convergence of the finite difference approximations of system (2) for the case
a(σ) = 1 + σ was studied in [20].

Our aims in the present note are to study the Galerkin finite element approximations
of initial-boundary value problem with mixed boundary conditions for system (2).

Consider the following initial-boundary value problem:
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(x, t) ∈ (0, 1)× (0,∞), (3)
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u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ [0, 1], (5)
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and u10 = u10(x), u20 = u20(x) are given functions.
We use the usual norm
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Now let us construct Galerkin finite element method approximation for the consid-
ered problem. One of the ingredients of finite-element method is a variational formu-
lation of the problem. We denote by H the linear space of functions u1, u2 satisfying
(4) and ||u1(·, t)||1 <∞, ||u2(·, t)||1 <∞.
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The variational formulation of the problem can now be stated as follows: Find a
pair of functions u1(x, t), u2(x, t) ∈ H for which

< v1,
∂u1
∂t

> + < (1 + σ(t))
∂u1
∂x

,
∂v1
∂x

>= < f1, v1 >,

< v2,
∂u2
∂t

> + < (1 + σ(t))
∂u2
∂x

,
∂v2
∂x

>= < f2, v2 >, ∀v1, v2 ∈ H,
(6)

and < v1, u1(x, 0) >=< v1, u10(x) >,
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where

< p(x), q(x) >=

1∫
0

p(x)q(x)dx.

To approximate the solution of (6) and (7) we require that u1, u2 and v1, v2 lie in
a finite-dimensional subspace Sh of H for each t.
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Once a basis has been selected for Sh, (8) and (9) are equivalent to a set of N
integro-differential equations, where N is the dimension of Sh.

Theorem. The error in the finite element approximation uh1 , u
h
2 generated by
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and

[]u[] =

T∫
0

1∫
0

|u|dxdt.

For the numerical solution of (8),(9) let ϕ1(x), . . . , ϕN(x) be a basis for Sh. Therefore
uh1 , u

h
2 ∈ Sh can be represented by

uh1(x, t) =
N∑
j=1

u1j(t)ϕj(x), uh2(x, t) =
N∑
j=1

u2j(t)ϕj(x).

Since (8),(9) are valid for all vh1 , v
h
2 ∈ Sh, one can assume vh1 = vh2 = ϕk. This yields

the following system for the weights u1(t), u2(t):

Mu1 +K(u1, u2)u1 = F1, Mu2 +K(u1, u2)u2 = F2, (10)

Mu1(0) = U1, Mu2(0) = U2, (11)

where Mjk =< ϕk, ϕj >,

K(u1, u2)jk =< (1 + σh(t))ϕ
′
k, ϕ

′
j >,

F1j =< ϕj, f1 >, F2j =< ϕj, f2 >, U1j =< ϕj, u10 > U2j =< ϕj, u20 > .

To solve the system (10),(11), the algorithm similar to [23] is used. Let us note that
in [22] the problem with first kind boundary conditions for (3) type scalar equation is
studied. Various numerical experiments were carried out and in all cases the agreement
with the theoretical results is observed.
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