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TO NUMERICAL REALIZATIONS OF SOME PROJECTIVE METHODS

Gülver Y., Gulua B.

Abstract. A variant of variation-discrete method given in [1, 2] is applied to solve some

BVPs with Dirichlet conditions. First the Poisson equation and then the tension-compression

problem of a 2D isotropic plate in a square [−1, 1]2 is considered. Boundary condition for

simplicity are assumed to be homogeneous. It is realized that the method applied has a higher

level of accuracy, convergence, stability and a wider class of applicability when compared to

the classical finite difference method. Other than those, the scheme obtained consists of

four subsystems which can be solved independently and hence enhancing the use of parallel

computations.
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The choice of coordinate functions is one of the main problems in approximate
methods. For boundary value problems first and a great step was covered by Courant
[3]. For approximate solution of BVP of ordinary differential equations the coordinate
system presented as a linear combination of classical orthogonal polynomials was used
by Mikhlin [4]. There the problems of stability of numerical processes defining as the
solution of corresponding algebraic system with respect to coefficients were system-
atically investigated and calculation of approximate solution was firstly considered.
Same problems for multi dimensional BVP for strongly elliptic systems of differential
equations in rectangular domains were investigated by Vashakmadze [1, 2].

Let us consider BVP

L(∂1, ∂2)u(x, y) = f(x, y), (x, y) ∈ D := (−1, 1)2, u|∂D = 0, (1)

where u(x, y) ∈ C2(D)
∩
C(D), f(x, y) ∈ C(D)1 and L(∂1, ∂2) is a linear strongly

elliptic operator. Instead of u(x, y) we take its series expansion

u(x, y) =
∞∑

i,j=1

uijφij(x, y), (2)

where uij are coefficients of u(x, y) in φij(x, y) bases functions which are defined as
multiplication of Legendre polynomials differences (relative to respective indexes) in
the following way

φij(x, y) := χPi(x)χPj(y), χPi(x) :=
1√

2(2i+ 1)
(Pi+1(x)− Pi−1(x)). (3)

1For simplicity f is taken from C(D). The only condition f to satisfy is that it is integrable in the
general sense over D. Therefore f can be selected from a more general class
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The difference is taken in such a way that the homogeneous boundary condition
given in (1) is satisfied. It’s evident that coordinate functions φij(x, y) constitute a
complete system in an admissible space of classical solutions of (1). The coefficient
in operator χ is selected so that after several operations it can be simplified by other
coefficients which came out of the integration given in (5). For the numerical realization
if we take the first N terms of the series (2), then it becomes

N
u(x, y) =

N∑
m,n=1

umnφmn. (4)

Now if we use Petrov-Galerkin type projective method we have∫∫
D

L(∂1, ∂2)
N
u(x, y)φijdω =

∫∫
D

f(x, y)φijdω =: (f, φij). (5)

(5) gives linear algebraic systems of equations which will be clarified by the following
examples. The first example is the Poisson equation and the second one is a 2D
tension-compression problem of an isotropic plate.

Example 1. We have the Poisson equation with a unit source function

−∆u(x, y) = 1, u|∂D = 0, D := [−1, 1]2. (6)

Let I△ := I11 + I22, where I11 := (∂11
N
u, φij), I22 := (∂22

N
u, φij).

After inserting (3) into (4) and the resulting equation into the above definition of
I11 we get

I11 :=

∫∫
D

[
∂2

∂x2

(
N∑

m,n=1

umnχPm(x)χPn(y)

)
χPi(x)χPj(y)

]
dxdy. (7)

Now, by taking the integral and partial differential operators inside the summation
and then integrating by parts while taking into account the following properties of
Legendre polynomials

1∫
−1

PmPndt =
2δmn

m+ n+ 1
, P ′

m+1 − P ′
m−1 = (2m+ 1)Pm, (8)

where prime sign in (8) denotes derivative with respect to the relevant argument x or
y, equation (7) reduces to the following algebraic equivalent

I11 = −ui,jcj + ui,j+2aj+1 + ui,j−2aj−1,

aj = dj+1

√
djdj+2, cj =

1

2
(dj − dj+2), dj =

1

2j − 1
.

Similarly for the second operator:

I22 = −ui,jci + ui+2,jai+1 + ui−2,jai−1.
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After finding algebraic equivalent of I△ the projected approximate equation related
to (1) becomes

ui,j(ci + cj)− ui+2,jai+1 − ui−2,jai−1 − ui,j+2aj+1 − ui,j−2aj−1 = gij, (9)

where

gij =

∫∫
D

χPi(x)χPj(y)dxdy, g11 =
2

3
, gij = 0, i ̸= 1 ̸= j.

The system obtained in (9) is in fact consists of four independent subsystems.
Indices (i, j) can take either odd or even values from 1 to N . Each combination results
in the same type of unknown coefficient indices, hence constitutes an independent
subsystem (see Fig. 1a). From the number of members’ point of view the obtained
scheme resembles the classical finite difference scheme. In the finite difference scheme
there are 4 members around a central member U i,j but with a step of one and they
cannot form independent subsystems. Using some estimates from ([2], ch. III) it is
evident that all eigenvalues of the matrix corresponding to system (9) are positives.

The solution of Poisson BVP is given in Fig. 1 b, c for N = 3 and the comparison
of the results with Kantorovich and Krilov [5] is shown in Table 1. The results given
in terms of T/(µθ). From Table 1 it is seen that even for N = 2 the result is equal to
the result of Ritz method and for N = 3 we have the most accurate result.

Fig.1. Figurative template for Laplacian(a), solution of the Poisson equation: contour plot(b) and

3-D graph(c).
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Table 1. Comparison of the results for the Poisson equation

Example 2. Tension-compression problem of a 2D isotropic plate with homoge-
neous boundary conditions can be formulated as below (see [1, 2, 6])

µ∆−→u + (λ∗ + µ)grad(div−→u ) =
−→
f , −→u |∂D = 0, (10)

where D := [−1, 1]2, the displacement vector −→u = (u1(x, y), u2(x, y))
T , the general-

ized force function
−→
f = (f1(x, y), f2(x, y))

T , λ∗ = 2λµ(λ + 2µ)−1, λ and µ are Lamé
constants.

We already know the template for direct second order derivatives from Example 1,
therefore we need only the template for mixed second order derivatives, application of
(5) gives

I12 :=

∫∫
D

∂2
N
u1

∂x∂y
χPi(x)χPj(x)dxdy = ui+1,j+1

1 bi+1,j+1

−ui+1,j−1
1 bi+1,j − ui−1,j+1

1 bi,j+1 + ui−1,j−1
1 bi,j,

(11)

where bi,j =
√
didi+1djdj+1. Considering templates for I11, I22 and I12 the approximate

algebraic equations for (11) become respectively

−
(
(λ∗ + 2µ)cj + µci

)
ui,j1 + (λ∗ + 2µ)

(
ui,j+2
1 aj+1 + ui,j−2

1 aj−1

)
+µ
(
ui+2,j
1 ai+1 + ui−2,j

1 ai−1

)
+ (λ∗ + µ)

(
ui+1,j+1
2 bi+1,j+1

−ui−1,j+1
2 bi,j+1 − ui+1,j−1

2 bi+1,j + ui−1,j−1
2 bi,j

)
= gij1 ,

(12)

−
(
(λ∗ + 2µ)ci + µcj

)
ui,j2 + (λ∗ + 2µ)

(
ui+2,j
2 ai+1 + ui−2,j

2 ai−1

)
+µ
(
ui,j+2
2 aj+1 + ui,j−2

2 aj−1

)
+ (λ∗ + µ)

(
ui+1,j+1
1 bi+1,j+1

−ui−1,j+1
1 bi,j+1 − ui+1,j−1

1 bi+1,j + ui−1,j−1
1 bi,j

)
= gij2 ,

(13)

where gijk =
∫∫
D

fk(x, y)χPi(x)χPj(x)dxdy, k = 1, 2.

To validate the correctness of the schema obtained in (12) and (13), displacements
are taken to be u1(x, y) = χP2(x)χP1(y) and u2(x, y) = u1(y, x). Inserting these
test functions into (10) we get the forces as f1(x, y) = x

√
15(−12 + 15y2 + x2)/4,

f2(x, y) = f1(y, x). After inserting these force functions the algebraic system of equa-
tions (12) and (13) are solved and the results are exactly the same as the test functions
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because they coincide with the coordinate functions, i.e. they are already in the form
of multiplication of difference of Legendre polynomials [5].
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