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Abstract. Parabolic regularization of the one-dimensional analog of Maxwell’s system which

describes process of penetration of the magnetic field into a substance is studied. Results of

numerical experiments based on finite difference schemes are given.
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Process of penetration of the magnetic field into a substance by the system of
Maxwell’s equations is described [1]. On the rectangle [0, 1] × [0, T ] consider the fol-
lowing initial-boundary value problem for one-dimensional analog of this system:
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U(0, t) = U(1, t) = 0, (3)

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ Const > 0, (4)

where a, U0, V0 are known functions of their arguments and T is the fixed positive
constant. It is well known that system (1),(2) describes many other physical processes
(see, for example, [2]).

Let us consider the parabolic regularization of the problem (1)-(4):
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U ε(x, 0) = U0(x), V ε(x, 0) = V0(x) ≥ Const, (8)

where ε is the positive constant.
By the first term in the right hand side of equation (6) Joule’s rule is described

and by the second added term in the same equation thermal conductivity is taken into
consideration.
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It is well known that parabolic approximations are considered and studied for many
mathematical and practical problems (see, for example, [3]).

The system (1),(2), i.e. the model (5),(6) with taking into account only Joule’s rule
(ε = 0) as well as system (5),(6) with both physical terms (ε > 0) are considered by
many authors (see, for example, [4]-[13] and references therein).

Let us note that (5),(6) type parabolic approximation for (1),(2) kind system are
considered in [13].

Note that system (1), (2) can be reduced to the integro-differential form [14]. Many
works are devoted to the integro-differential models of this type (see, for example,
[15]-[19] and references therein). The questions of existence, uniqueness, long time
asymptotic behavior of the solutions and numerical resolution of some kind of initial-
boundary value problems for integro-differential models of this kind are studied in these
works.

The purpose of the present note is to study convergence of the solution U ε, V ε of
problem (5)-(8) to the solution U, V of problem (1)-(4) as ε → 0. Establishing this
convergence by the numerical experiments, using finite difference scheme, constructed
and investigated in [12], is also the purpose of this note.

Let us assume that problems (1)-(4) and (5)-(8) have regular solutions. The fol-
lowing statement takes place.

Theorem. If a0 6 a (V ) 6 A0, where a0, A0 are positive constants, the solution
U ε, V ε of problem (5)-(8) converges to the solution U , V of problem (1)-(4) as ε → 0
in the norm of the space L2 (0, 1) .

Let us consider problems (1)-(4) and (5)-(8) with the nonhomogeneous right hand
sides in both equations of the systems. Introduce the uniform grids ω̄h = {ti = ih, i =
0, 1, ...M} on [0, 1] and ωτ = {tj = jτ, j = 0, 1, ...N} on [0, T ] and using usual notations
(see, for example, [20]) let us consider the following difference scheme [12]:

uεt = (a (v̂ε) û
ε
x̄)x + f, (9)

vεt = σa (v̂ε) (ûεx̄)
2 + (1− σ) a (vε) (uεx̄)

2 + v̂εx̄x + g, (10)

uε,j0 = uε,jM = vε,jx0 = vε,jx̄M = 0, j = 0, 1, .., N, (11)

uε,0i = U0,i vε,0i = V0,i, i = 0, 1, ..,M. (12)

Here f , g are given functions and 0 ≤ σ ≤ 1 is a given constant.
The difference scheme (9)-(12) is the first order, i.e. its rate is O (τ + h).
Note that, in the case σ = 0, for solving the finite difference scheme (9)-(12) at first

we solve system (10) by known tridiagonal matrix algorithm and after we solve system
(9) by same algorithm, using in both cases suitable boundary and initial conditions
from (11), (12). In the case σ ̸= 0, i.e. for solving fully implicit scheme (9)-(12) we
must include a method of solving system of nonlinear algebraic equations. So, it is
necessary to use Newton iterative process. It is easy to notice that for the solution of
the implicit scheme (9)-(12) the numerical algorithms [4], based on a Newton method
[21] without main changes, can be used.

At the end we will note that numerical test experiments, carried out on the basis
on difference schemes (9)-(12), are founded on the above described algorithms.
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The nonlinearities of the following kinds are considered a (V ) = 1

1+V
1
2
. The numer-

ical experiments are quite satisfactory and fully agree with the considered exact test
solutions of problem (1)-(4). One of these solutions have the form:

U (x, t) = x (1− x) (1 + t) V (x, t) = x2 (1− x)2
(
1 + t2

)
+ 1.

The graphs of suitable numerical results are given in Fig. 1 and Fig. 2.

Fig. 1. Exact (solid line) and numerical (marked with ×) solutions U (left) and V

(right) and differences between exact and numerical solutions (marked with •) when
ε = 0.01.

Fig. 2. Exact (solid line) and numerical (marked with ×) solutions U (left) and V

(right) and differences between exact and numerical solutions (marked with •) when
ε = 0.001.

Let us note that numerical experiments give convergence of the solution uε, vε of
the considered (9)-(12) schemes when τ → 0, h → 0 and ε → 0 to the exact solution
U , V of the problem (1)-(4).
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