
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 26, 2012

ASYMPTOTIC BEHAVIOR OF THE SOLUTION AND FINITE DIFFERENCE
SCHEME FOR ONE NONLINEAR INTEGRO-DIFFERENTIAL MODEL WITH

SOURCE TERMS

Aptsiauri M.

Abstract. One nonlinear integro-differential system with source terms is considered. The

model arises at describing penetration of a magnetic field into a substance and is based on

the well known Maxwell system. Large time behavior of solutions of the initial-boundary

value problem is studied. Corresponding finite difference scheme is considered as well.
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One kind of nonlinear integro-differential model arises on mathematical simulation
of the process of penetration of a magnetic field into a substance [1]. This model was
introduced after reduction of well known nonlinear Maxwell’s differential system [2] to
the integro-differential form. In [3] some generalization of such type models is given.
One-dimensional simple analog called by averaged integro-differential model by the
author describing the same physical process has the following form
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where a = a(S) ≥ a0 = Const > 0 is a given function of its argument.
Many works are dedicated to the investigation and numerical resolution of the

integro-differential models described in [1] and [3]. Especially, in [1], [3]-[10] solvability
and uniqueness of the initial-boundary value problems for equations and systems of
this type are studied. Asymptotic behavior of solutions as t → ∞ is investigated in
many works as well (see, for example, [8],[10]-[25] and references therein). Numerical
resolution by finite difference scheme is given in [10], [14], [17]-[24], [26], [27] and in a
number of other papers as well.

The aim of this note is to study asymptotic behavior of solution t → ∞ and to
construct approximate solutions for one generalization of the system of type (1) by
adding monotonic nonlinear terms. This system has the form:
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where q ≥ 2.
Let us note that generalizations of such kind for the equation described in [1] are

made in [22] and for (2) type averaged equation is discussed in [24].
In [0, 1]× [0,∞) let us consider the following initial-boundary value problem

U(0, t) = U(1, t) = V (0, t) = V (1, t) = 0,
U(x, 0) = U0(x), V (x, 0) = V0(x),

(3)

where U0 = U0(x) and V0 = V0(x) are given functions.
The following statement is true.
Theorem 1. If q ≥ 2 and U0, V0 ∈ H1

0 (0, 1), then problem (2),(3) does not have
more than one solution and the following asymptotic property takes place
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Here ∥·∥ is the usual norm of the space L2(0, 1) and C denotes the positive constant,
independent of t.

On [0, 1] × [0, T ] let us introduce a grid with mesh points denoted by (xi, tj) =
(ih, jτ), where i = 0, 1, ...,M ; j = 0, 1, ..., N , with h = 1/M, τ = T/N . The initial
line is denoted by j = 0. The discrete approximation at (xi, tj) is designed by uji , v

j
i

and the exact solution to problem (2), (3) by U j
i , V

j
i . We will use the following known

notations:

rjt,i =
rj+1
i − rji
τ

, rjt̄,i = rj−1
t,i =

rji − rj−1
i

τ
.

Using usual methods of construction of difference schemes (see, for example, [28])
let us construct, as in [17], [21] for the same problem without the force terms, the
following finite difference scheme for problem (2),(3):
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i = 1, 2, ...M − 1; j = 0, 1...N − 1,

uj0 = ujM = vj0 = vjM = 0, j = 0, 1, . . . , N,

u0i = U0,i, v
0
i = V0,i, i = 0, 1, . . . ,M.

(4)

The following statement takes place.
Theorem 2. If q ≥ 2 and the initial-boundary value problem (2),(3) has the

sufficiently smooth solution U = U(x, t), V = V (x, t), then the finite difference scheme
(4) converges and the following estimate is true∥∥uj − U j

∥∥+ ∥∥vj − V j
∥∥ ≤ C(τ + h).
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Here ∥·∥ is a discrete analog of the norm of the space L2(0, 1) and C is a positive
constant, independent of τ and h.

Note that for solving the finite difference scheme (4) we use an algorithm analogical
to [17], [21]. So, it is necessary to use Newton iterative process [29]. According to this
method the great numbers of numerical experiments are carried out. These experiments
agree with the theoretical results given in Theorems 1 and 2.
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