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Abstract. In the present work we solve explicitly, by means of absolutely and uniformly

convergent series the boundary value problems of statics of the linear theory of thermoelas-

ticity with microtemperatures for an elastic plane with a circular hole. The question on the

uniqueness of a solution of the problem is investigated.
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1. Basic equations. We consider the plane D with a circular hole. Let R be the
radius of the boundary S. The system of equations of the theory of thermoelasticity
with microtemperatures is the form [1,2]:

µ∆u(x) + (λ+ µ)graddivu(x) = βgradu3(x),

k∆u3(x) + k1divw(x) = 0,

k6∆w(x) + (k4 + k5)graddivw(x)− k3gradu3(x)− k2w(x) = 0,

(1)

where λ, µ, β, k, k1, k2, k3, k4, k5, k6 are constitutive coefficients [1]; u(x) is the displace-
ment of the point x; u = (u1, u2);w = (w1, w2) is the microtemperatures vector; u3 is
temperature measured from the constant absolute temperature T0; ∆ is the Laplace
operator.

Problems. Find a regular solution U(u, u3, w) of system (1) satisfying the bound-
ary conditions

I.u(z) = f(z), u3(z) = f3(z), w(z) = p(z);

II.T ′(∂z, n)u(z)− βu3(z)n(z) = f(z), k∂nu3(z) + k1w(z)n(z) = f3(z),
(2)

T ′′(∂z, n)w(z) = p(z), z ∈ S,

where n is the external unit normal vector to S; f = (f1, f2), p = (p1, p2), f1, f2, f3, p1, p2
- are the given functions on S, ∂n = ∂

∂n
; ∂k =

∂
∂xk

, k = 1, 2; T ′u is the stress vector in

the classical theory of elasticity; T ′′w is stress vector for microtemperatures [2]:

T ′(∂x, n)u(x) = µ∂nu(x) + λn(x)divu(x) + µ
2∑
i=1

ni(x)gradui(x),

T ′′(∂x, n)w(x) = (k5 + k6)∂nw(x) + k4n(x)divw(x) + k5
2∑
i=1

ni(x)gradwi(x).
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Vector U(x) satisfies the following conditions at infinite:

(u(x), w(x)) = O(1), r2∂xk(u(x), w(x)) = O(1), r2u3(x) = O(1), k = 1, 2, (3)

where r2 = x21 + x22. Separately we will study the following problems: 1. Find in a
plane D solution u(x) of equation (1)1, if on the circumference S there are given the
values: a) of the vector u - problem A1; b) of the vector T ′(∂z, n)u(z) − βu3(z)n(z) -
problem A2.
2. Find in a plane D solutions u3(x) and w(x) of the system of equations (1)2 and
(1)3, if on the circumference S there are given the values: a) of the function u3 and
the vector w(z) - problem B1; b)of the function k∂nu3(z) + k1w(z)n(z) and the vector
T ′′(∂z, n)w(z) - problem B2.

Thus the above-formulated problems of thermoelasticity with microtemperatures
can be considered as a union of two problems: I - (A1, B1) and II - (A2, B2).

2. Uniqueness theorems. By virtue of conditions (3), the following theorems
are valid.

Theorem 1. The difference of two arbitrary solutions of problem I is equal to zero:
u1 = u2 = 0, u3 = 0, w1 = w2 = 0;

Theorem 2. The difference of two arbitrary solutions of problem II is the vector
U(u1(x), u2(x), u3(x), w1(x), w2(x)), where u1 = q1, u2 = q2, u3 = c, w1 = w2 =
0, c, q1, q2 is an arbitrary constants.

3. Solutions of the Problems. On the basic of the system (1)2, (1)3, we can
write

△(△+ s21)u3 = 0, △(△+ s21)divw = 0.

Solutions of these equations are represented in the form [3]:

u3(x) = φ1(x) + φ2(x), w1(x) = a1∂1φ1(x) + a2∂2φ2(x)− a3∂2φ3(x),

w2(x) = a1∂2φ1(x) + a2∂1φ2(x) + a3∂1φ3, (4)

where △φ1 = 0, (△+ s21)φ2 = 0, (△+ s22)φ3 = 0, s21 = −
kk2 − k1k3

kk7
, s22 = −

k2
k6
,

a1 = −
k3
k2
, a2 = −

k

k1
, a3 =

k6
k7

; k7 = k4 + k5 + k6; k, k2, k6, k7 > 0 [2].

Problem B1. Taking into account formulas (4), the boundary conditions of the
problem B1 can be rewritten as:

u3(z) = f3(z), wn(z) = pn(z), ws(z) = ps(z), (5)

where wn = (w · n), ws = (w · s), pn = (p · n), ps = (p · s), n = (n1, n2), s = (−n2, n1).
The harmonic function φ1 and metaharmonic functions φ2 and φ3 are represented

in the form of series:

φ1(x) =
1

2
Y01 +

∞∑
m=1

(
R

r

)m
(Ym1 · νm(ψ)),
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φ2(x) =
∞∑
m=0

Km(s2r)(Ym2 · νm(ψ)), φ3(x) =
∞∑
m=0

Km(s3r)(Ym3 · sm(ψ)), (6)

respectively, where Km is the Bessel’s function with an imaginary argument; Ymk are
the unknown two-component constants vectors, νm(ψ) = (cosmψ, sinmψ),
sm(ψ) = (− sinmψ, cosmψ), k = 1, 2, m = 0, 1, ....

Let the functions pn, ps and f3 expand into the Fourier series.
We substitute (6) into (4) and then the obtained expression into (5). Passing to

the limit, as r → R, for the unknowns Ymk we obtain a system of algebraic equations:

−ma1Ym1 +Ra2s2K
′
m(s2R)Ym2 + a3mKm(s3R)Ym3 = αmR,

ma1Ym1 + a2mKm(s2R)Ym2 +Ra3s3K
′
mYm3 = βmR,

Ym1 +Km(s2R)Ym2 = γm, m = 1, 2, ...;

(7)

Y01 = γ0 −
α0K0(s2R)

a2s2K ′
0(s2R)

, Y02 =
α0

2a2s2K ′
0(s2R)

, Y03 =
β0

2a3s3K ′
0(s3R)

, (8)

where αm = (αm1, αm2), βm = (βm1, βm2) and γm = (γm1, γm2) ate the Fourier coeffi-
cients of the functions pn, ps and f3, respectively.

Relying on the theorem on the uniqueness of a solution of the problem we can
conclude that the principal determinants of the system (7) are other than zero. Sub-
stituting the solution of the systems (7) and solution (8) into (6) and then into (4),we
can find values of the functions u3(x), w1(x) and w2(x).

Problem B2. Taking into account formulas (4), the boundary conditions of the
problem B2 can be rewritten as:

k7 [∂rwn]R + k4
R
[∂ψws]R = pn(z), k6 [∂rws]R + k5

R
[∂ψwn]R = ps(z),

k [∂u3]R + k1[wn]R = f3(z).
(9)

We substitute (6) into (4), then the obtained expression into (9). Passing to the
limit, as r → R, from (9) we obtain the system of linear algebraic equations with regard
to the unknowns Ymk for every value m:

a1m[(k7 − k4)m+ k7]Ym1 + a2[k7s
2
2K

′′
m(s2R)R

2 − k4m2a1Km(s2R)]Ym2

+a3m[k7[s3RK
′
m(s3R)−Km(s3R)]− k4s3RK ′

m(s3R)]Ym3 = αmR
2,

a1m[(k6 + k5)m− k6]Ym1 + a2m[k6[s2RK
′
m(s2R)−Km(s2R)] + k5s2RK

′
m(s2R)]Ym2

+a3[k6s
2
3R

2K ′′
m(s3R) + k5a3m

2Km(s3R)]Ym3 = βmR
2,

m(−k+k1a1)Ym1+ s2K
′
m(s2R)(k+k1a2R)Ym2+a3mKm(s3R)Ym3 = γmR,m = 1, 2, ....

Taking into account the condition
∫
S
p(y)dyS = 0 and equation (1)2, we obtain:

Y02 = 0, Y03 = 0, Y01 = const.
Problem A1. A solution (1)1 is sought in the form

u(x) = v0(x) + v(x), (10)
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where v0 is a particular solution of equation (1)1, and v is a general solution of the
corresponding homogeneous equation (1)1. Direct checking shows that v0 has the form:
v0(x) =

β
λ+2µ

grad[− 1
s21
φ2(x) + φ0(x)], where φ0 is a biharmonic function: △φ0 = φ1.

A solution v(x) = (v1(x), v2(x)) of the homogeneous equation corresponding to (1)1:
µ△v(x) + (λ+ µ)graddivv(x) = 0 is sought in the form

v1(x) = ∂1[Φ1(x) + Φ2(x)]− ∂2Φ3(x), v2(x) = ∂2[Φ1(x) + Φ2(x)] + ∂1Φ3(x), (11)

where ∆Φ1(x) = 0,∆∆Φ2(x) = 0,∆∆Φ3(x) = 0, (λ + 2µ)∂1∆Φ2(x) − µ∂2∆Φ3(x) =
0, (λ+ 2µ)∂2∆Φ2(x) + µ∂1∆Φ3(x) = 0, Φ1, Φ2, Φ3 are the scalar functions.

We can represent the harmonic function Φ1 and biharmonic functions Φ2 and Φ3 in
the form

Φ1(x) =
∞∑
m=0

(
R

r

)m
(Xm1 · νm(ψ)), Φ2(x) =

∞∑
m=0

R2

(
R

r

)m−2

(Xm2 · νm(ψ)),

Φ3(x) =
R2(λ+ 2µ)

µ

∞∑
m=0

(
R

r

)m−2

(Xm2 · sm(ψ)),
(12)

where Xmk are the unknown two-component vectors, k = 1, 2.
Taking into account (10) the condition (2)I , we can write as: v(z) = Ψ(z), where

Ψ(z) = f(z)− v0(z) is the known vector.
Substitute in this boundary condition the formulas (11) and (11), we obtain the

system of algebraic equations for every m, whose solution is written as follows:

X01 =
η0R

4
, X02 =

ς0R

4(λ+ 2µ)
, Xm1 =

ηmR

m
− (ςm − ηm)R

2(λ+ µ)m
,Xm2 = µ

(ςm − ηm)R
2(λ+ µ)m

,

where ηm and ςm are the Fourier coefficients of the functions Ψn(z) and Ψs(z); Ψn and
Ψs are normal and tangential components of the function Ψ(z), respectively.

Problem A2. Taking into account (10) the condition (2)II , we can rewrite as
T ′(∂z, n)v(z) = Ψ(z), where Ψ(z) = f(z) + βu3(z)n(z) − T ′(∂z, n)v0(z) is the known
vector, Ψ = (Ψ1,Ψ2).

We substitute in this boundary condition the formulas (11) and (12). For the
unknowns Xm1 and Xm2 we obtain a system of algebraic equations whose solution has
the form

X01 =
η0R

2

4(λ+ 2µ)
, X02 =

ς0R
2

4(λ+ 2µ)
, Xm1 =

R2

c3
ςm −

c4R
2

c2c3 − c1c4
(µηm − c1ςm),

Xm2 =
c4R

2

c2c3 − c1c4
(µηm − c1ςm),

where c1 = µ[2(λ + µ)m2 − (λ + 2µ)m], c2 = 2(λ + µ)(λ + 3µ)m2 + (λ + 2µ)[(3λ +
5µ)m+ 2µ], c3 = mµ(2µ− 1), c4 = 2(λ+ 3µ)m(2m+ 3) + 2(λ+ 2µ),m = 1, 2, ....
ηm and ςm are the Fourier coefficients of respectively normal and tangential components
of the function Ψ(z).
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Having solved problems A1, A2, B1 and B2, we can write solutions of the initial
problems I and II.
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