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EXPLICIT SOLUTIONS OF SOME PROBLEMS OF STATICS OF THE LINEAR
THEORY OF ELASTIC MIXTURES FOR HALF-PLANE

Svanadze K.

Abstract. Using the method of Kolosov-Muskhelishvili for a half-plane are explicity solved

the following two boundary value problem of statics of the linear theory of elastic mixtures,

on the case, when on boundary domain are given (Un, σs)
T and (Us, σn)

T vectors respectively,

where Un = (u1n1+u2n2, u3n1+u4n2)
T , Us = (u2n1−u1n2, u1n1−u3n2)

T , σn = ((Tu)2n1+

(Tu)1n2, (Tu)3n1 + (Tu)4n2)
T , σs = ((Tu)2n1 − (Tu)1n2, (Tu)4n1 − (Tu)3n2)

T , Uk(Tu)k,

k = 1, 4, are displacement and stress vectors components respectively, n = (n1, n2)
T is the

unit vector of the outer normal.

Keywords and phrases: Kolosov-Muskhelishvili type formulas, elastic mixture, boundary

value problem, Riemann-Hilbert problem.
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1. A homogeneous equation of statics of the theory of elastic mixtures in a complex
form is of the type [1]
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where z = x1 + ix2, z = x1 − ix2,
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U = (u1 + iu2, u3 + iu4)
T , u′ = (u1, u2)

T and u′′ = (u3, u4)
T are partial displacements,

K = −1

2
em−1, e =
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]
, m−1 =

[
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]−1

,

mk, l3+k, k = 1, 2, 3, are expressed in the therms of the elastic [1].
In the case of an infinite domain in addition to the conditions of regularity it is

necessary to impose the requi rements at infinity

U = O(1),
∂u

∂xk
= O(|x|−2), k = 1, 2, |x|2 = x21 + x22.

In [1] M. Basheleishvili obtained the representations:

U = (u1 + iu2, u3 + iu4)
T = mφ(z) +

1

2
ezφ′(z) + ψ(z), (2)
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(Tu)4 − i(Tu)3

)
=

=
∂

∂s(x)
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(A− 2E)φ(z) + Bzφ′(z) + 2µψ(z)

]
, (3)
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where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions,
∂

∂s(x)
=

n1
∂

∂x2
− n2

∂

∂x1
,

(Tu)1 = (aθ′ + c0θ
′′)n1 − (a1ω

′ + cw′′)n2 − 2
∂
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(µ1u2 + µ3u4),

(Tu)2 = (aθ′ + c0θ
′′)n2 + (a1ω

′ + cw′′)n1 + 2
∂

∂s(x)
(µ1u1 + µ3u3),

(Tu)3 = (c0θ
′ + bθ′′)n1 − (cω′ + a2w

′′)n2 − 2
∂

∂s(x)
(µ3u2 + µ2u4),

(Tu)4 = (c0θ
′ + bθ′′)n2 + (cω′ + a2w

′′)n1 + 2
∂

∂s(x)
(µ3u1 + µ2u3);

θ′ = div u′, θ′′ = div u′′, ω′ = rotu′ ω′′ = rotu′′,

A = 2µm, B = µe, µ =

[
µ1 µ3

µ3 µ2

]
, E =

[
1 0
0 1

]
.

µ1, µ2, µ3, a1, a2, c, a = a1+b1, b = a2+b2, c0 = c+d, b1, b2 and d are elastic constants
satisfy the certain conditions [2].

(2) and (3) are analogous to the Kolosov-Muskhelishvili’s formulas for the linear
theory of eslastic mixture.

2. Let D denoted the upper half-plane. Clearly the boundary of D is ox1 axis. Let
L =]−∞,∞[ and choose the exterior unit normal n = (n1, n2)

T = (0,−1)T .
The boundary value problems under consideration can be formulated in the form;

Find a regular solution to the system (1) in D satisfying one of the following boundary
conditions:

(u2, u4)
T =

(1)

f0(x1), ((Tu)1, (Tu)3)
T =

(1)

F0(x1), x1 ∈ L, (4)

(u1, u3)
T =

(2)

f0(x1), ((Tu)2, (Tu)4)
T =

(2)

F0(x1), x ∈ L, (5)

where
(j)

f0 and
(j)

F0, j = 1, 2, are given vector-functions satisfying certain smoothness

conditions and also some conditions at infinity
(j)

f0=
(j)
α+

(j)

β/|x1|1+ν,
(j)

F0 =
(j)
γ +

(j)

δ /|x1|1+ν ,

where
(j)
α ,

(j)

β ,
(j)
γ and

(j)

δ , j = 1, 2 are an arbitrary real constant vectors, and ν > 0.
Using the Green formula [1] it is easy to prove.

Theorem 1. The general solution of the homogeneous problem (4) is represented
by the formula U = β, where β is an arbitrary real constant vector.

Theorem 2. The general solution of the homogeneous problem (5) is represented
by the formula U = iδ, where δ is an arbitrary real constant vector.

Let now (Tu)k =
∂Wk

∂s
, k = 1, 4. Then (4) and (5) boundary conditions can be
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rewritten in the form:

(u2, u4)
T =
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T =
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where
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∫ t
−∞

(j)
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(1)
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(2)
e are an arbitrary real constant vectors.

3. On the basis of (2) and (3), the problem (6) is reduced to finding two analytic
vector-functions φ(z) and ψ(z) in the D by the boundary conditions

Re(iφ(t)) = −µ
(1)
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2
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2
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2
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e
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2
m

(1)
e , t ∈ L. (9)

The boundary condition (8) and (9) are the Riemann-Hilbert problem in the privan
case for domain D.

A solution of the problems can be represented in the form [3]

φ(z) = − 1
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Substituting (10) in (2), we obtain

U(z) = −m
n
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L
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(11) represent a regular solution of the problem (4).
4. By virtue of formulas (2) and (3), the boundary conditions (7) take the form

Reφ(t) = µ
(2)
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1

2
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2
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2
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1

2
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1

2
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1

2
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e , t ∈ L, (13)

The solution of problems (12) and (13) can be represented as [3]

φ(z) =
1

πi

∫
L
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2
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1
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From (14) and (2) we readily obtain

U(x) =
m

πi

∫
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2πi

∫
L

g′(t)dt

t− z
− 1

πi

∫
L

h(t)dt

t− z
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(15) is a regular solution of the problem (5).
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