Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 25, 2011

EXPLICIT SOLUTIONS OF SOME PROBLEMS OF STATICS OF THE LINEAR THEORY OF ELASTIC MIXTURES FOR HALF-PLANE

Svanadze K.

Abstract. Using the method of Kolosov-Muskhelishvili for a half-plane are explicitly solved the following two boundary value problem of statics of the linear theory of elastic mixtures, on the case, when on boundary domain are given $(U_n, \sigma_s)^T$ and $(U_s, \sigma_n)^T$ vectors respectively, where $U_n = (u_1n_1 + u_2n_2, u_3n_1 + u_4n_2)^T$, $U_s = (u_2n_1 - u_1n_2, u_1n_1 - u_3n_2)^T$, $\sigma_n = ((Tu)_2n_1 + (Tu)_1n_2, (Tu)_3n_1 + (Tu)_4n_2)^T$, $\sigma_s = ((Tu)_2n_1 - (Tu)_1n_2, (Tu)_4n_1 - (Tu)_3n_2)^T$, $U_k(Tu)_k$, $k = \overline{1, 4}$, are displacement and stress vectors components respectively, $n = (n_1, n_2)^T$ is the unit vector of the outer normal.

Keywords and phrases: Kolosov-Muskhelishvili type formulas, elastic mixture, boundary value problem, Riemann-Hilbert problem.

AMS subject classification: 74B05.

1. A homogeneous equation of statics of the theory of elastic mixtures in a complex form is of the type [1]

$$\frac{\partial^2 U}{\partial z \partial \overline{z}} + \mathcal{K} \frac{\partial^2 \overline{U}}{\partial \overline{z}^2} = 0, \tag{1}$$

where $z = x_1 + ix_2$, $\overline{z} = x_1 - ix_2$, $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right)$, $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right)$, $U = (u_1 + iu_2, u_3 + iu_4)^T$, $u' = (u_1, u_2)^T$ and $u'' = (u_3, u_4)^T$ are partial displacements,

$$\mathcal{K} = -\frac{1}{2}em^{-1}, \quad e = \begin{bmatrix} e_4 & e_5\\ e_5 & e_6 \end{bmatrix}, \quad m^{-1} = \begin{bmatrix} m_1 & m_2\\ m_2 & m_3 \end{bmatrix}^{-1},$$

 $m_k, l_{3+k}, k = 1, 2, 3$, are expressed in the therms of the elastic [1].

In the case of an infinite domain in addition to the conditions of regularity it is necessary to impose the requirements at infinity

$$U = O(1), \quad \frac{\partial u}{\partial x_k} = O(|x|^{-2}), \quad k = 1, 2, \quad |x|^2 = x_1^2 + x_2^2.$$

In [1] M. Basheleishvili obtained the representations:

$$U = (u_1 + iu_2, u_3 + iu_4)^T = m\varphi(z) + \frac{1}{2}ez\overline{\varphi'(z)} + \overline{\psi(z)},$$
(2)

$$Tu = \begin{pmatrix} (Tu)_2 - i(Tu)_1 \\ (Tu)_4 - i(Tu)_3 \end{pmatrix} =$$
$$= \frac{\partial}{\partial s(x)} \Big[(A - 2E)\varphi(z) + Bz\overline{\varphi'(z)} + 2\mu\overline{\psi(z)} \Big], \tag{3}$$

where $\varphi = (\varphi_1, \varphi_2)^T$ and $\psi = (\psi_1, \psi_2)^T$ are arbitrary analytic vector-functions, $\frac{\partial}{\partial s(x)} = n_1 \frac{\partial}{\partial x_2} - n_2 \frac{\partial}{\partial x_1}$, $(Tu)_1 = (a\theta' + c_0\theta'')n_1 - (a_1\omega' + cw'')n_2 - 2\frac{\partial}{\partial s(x)}(\mu_1u_2 + \mu_3u_4),$ $(Tu)_2 = (a\theta' + c_0\theta'')n_2 + (a_1\omega' + cw'')n_1 + 2\frac{\partial}{\partial s(x)}(\mu_1u_1 + \mu_3u_3),$ $(Tu)_3 = (c_0\theta' + b\theta'')n_1 - (c\omega' + a_2w'')n_2 - 2\frac{\partial}{\partial s(x)}(\mu_3u_2 + \mu_2u_4),$ $(Tu)_4 = (c_0\theta' + b\theta'')n_2 + (c\omega' + a_2w'')n_1 + 2\frac{\partial}{\partial s(x)}(\mu_3u_1 + \mu_2u_3);$ $\theta' = \operatorname{div} u', \quad \theta'' = \operatorname{div} u'', \quad \omega' = \operatorname{rot} u' \quad \omega'' = \operatorname{rot} u'',$ $A = 2\mu m, \quad B = \mu e, \quad \mu = \begin{bmatrix} \mu_1 & \mu_3 \\ \mu_3 & \mu_2 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

 $\mu_1, \mu_2, \mu_3, a_1, a_2, c, a = a_1 + b_1, b = a_2 + b_2, c_0 = c + d, b_1, b_2$ and d are elastic constants satisfy the certain conditions [2].

(2) and (3) are analogous to the Kolosov-Muskhelishvili's formulas for the linear theory of eslastic mixture.

2. Let *D* denoted the upper half-plane. Clearly the boundary of *D* is ox_1 axis. Let $L =] - \infty, \infty [$ and choose the exterior unit normal $n = (n_1, n_2)^T = (0, -1)^T$.

The boundary value problems under consideration can be formulated in the form; Find a regular solution to the system (1) in D satisfying one of the following boundary conditions:

$$(u_2, u_4)^T = f_0^{(1)}(x_1), \quad ((Tu)_1, (Tu)_3)^T = F_0^{(1)}(x_1), \quad x_1 \in L,$$
 (4)

$$(u_1, u_3)^T = f_0^{(2)}(x_1), \quad ((Tu)_2, (Tu)_4)^T = F_0^{(2)}(x_1), \quad x \in L,$$
 (5)

where $\stackrel{(j)}{f_0}$ and $\stackrel{(j)}{F_0}$, j = 1, 2, are given vector-functions satisfying certain smoothness conditions and also some conditions at infinity $\stackrel{(j)}{f_0} = \stackrel{(j)}{\alpha} + \frac{\beta}{\beta} / |x_1|^{1+\nu}$, $\stackrel{(j)}{F_0} = \stackrel{(j)}{\gamma} + \frac{\beta}{\delta} / |x_1|^{1+\nu}$, where $\stackrel{(j)}{\alpha}$, $\stackrel{(j)}{\beta}$, $\stackrel{(j)}{\gamma}$ and $\stackrel{(j)}{\delta}$, j = 1, 2 are an arbitrary real constant vectors, and $\nu > 0$. Using the Green formula [1] it is easy to prove.

Theorem 1. The general solution of the homogeneous problem (4) is represented by the formula $U = \beta$, where β is an arbitrary real constant vector.

Theorem 2. The general solution of the homogeneous problem (5) is represented by the formula $U = i\delta$, where δ is an arbitrary real constant vector.

Let now $(Tu)_k = \frac{\partial W_k}{\partial s}$, $k = \overline{1, 4}$. Then (4) and (5) boundary conditions can be

rewritten in the form:

$$(u_2, u_4)^T = {}^{(1)}_{f_0}(t), \quad (W_1, W_3)^T = {}^{(1)}_{\chi}(t) + {}^{(1)}_{e}, \quad t \in L,$$
 (6)

$$(u_1, u_3)^T = f_0^{(2)}(t), \quad (W_2, W_4)^T = \chi^{(2)}(t) + e^{(2)}, \quad t \in L,$$
 (7)

where $\chi^{(1)}(t) = \int_{-\infty}^{t} F_0(t_0) dt_0, t \in L, e^{(1)}$ and $e^{(2)}$ are an arbitrary real constant vectors. 3. On the basis of (2) and (3), the problem (6) is reduced to finding two analytic

vector-functions $\varphi(z)$ and $\psi(z)$ in the *D* by the boundary conditions

$$\operatorname{Re}(i\varphi(t)) = -\mu f_0(t) - \frac{1}{2}\chi^{(1)}(t) - \frac{1}{2}e^{(1)} = f(t) - \frac{1}{2}e^{(1)}, \quad t \in L,$$
(8)

$$\operatorname{Re}(i\psi(t)) = \overset{(1)}{f_6}(t) + mf(t) - \frac{1}{2}etf'(t) - \frac{1}{2}m\overset{(1)}{e} = F(t) - \frac{1}{2}m\overset{(1)}{e}, \quad t \in L.$$
(9)

The boundary condition (8) and (9) are the Riemann-Hilbert problem in the privan case for domain D.

A solution of the problems can be represented in the form [3]

$$\varphi(z) = -\frac{1}{\pi} \int_{L} \frac{f(t)dt}{t-z} + \frac{i}{2} \stackrel{(1)}{e}, \quad \psi(z) = -\frac{1}{\pi} \int_{L} \frac{F(t)dt}{t-z} + \frac{i}{2} m \stackrel{(1)}{e}, \quad (10)$$

Substituting (10) in (2), we obtain

$$U(z) = -\frac{m}{n} \int_{L} \frac{f(t)dt}{t-z} - \frac{ez}{2\pi} \int_{L} \frac{f'(t)dt}{t-\overline{z}} - \frac{1}{\pi} \int_{L} \frac{F(t)dt}{t-\overline{z}}.$$
 (11)

(11) represent a regular solution of the problem (4).

4. By virtue of formulas (2) and (3), the boundary conditions (7) take the form

$$\operatorname{Re}\varphi(t) = \mu f_0^{(2)} - \frac{1}{2}\chi^{(2)}(t) - \frac{1}{2}e^{(2)} = g(t) - \frac{1}{2}e^{(2)}, \quad t \in L,$$
(12)

$$\operatorname{Re}\psi(t) = f_0^{(2)}(t) - mg(t) - \frac{1}{2}etg'(t) + \frac{1}{2}m_e^{(2)} = h(t) + \frac{1}{2}m_e^{(2)}, \quad t \in L,$$
(13)

The solution of problems (12) and (13) can be represented as [3]

$$\varphi(z) = \frac{1}{\pi i} \int_{L} \frac{g(t)dt}{t-z} - \frac{1}{2} \stackrel{(2)}{e}, \quad \psi(z) = \frac{1}{\pi i} \int_{L} \frac{h(t)dt}{t-z} + \frac{1}{2} m \stackrel{(2)}{e}. \tag{14}$$

From (14) and (2) we readily obtain

$$U(x) = \frac{m}{\pi i} \int_{L} \frac{g(t)dt}{t-z} - \frac{ez}{2\pi i} \int_{L} \frac{g'(t)dt}{t-\overline{z}} - \frac{1}{\pi i} \int_{L} \frac{h(t)dt}{t-\overline{z}}.$$
 (15)

(15) is a regular solution of the problem (5).

$\mathbf{R} \to \mathbf{F} \to \mathbf{R} \to \mathbf{N} \to \mathbf{C} \to \mathbf{S}$

1. Basheleishvili M., Svanadze K. A new method of solving the basic plane boundary value problems of statics of the elastic mixture theory. *Georgian Math. J.* **8**, 3 (2001), 427-446.

2. Basheleishvili M., Svanadze K. Investigation of basic plane boundary value problems of statics of elastic mixtures for piecewise homogeneous isotropic media. *Mem. Differential Equations Math. Phys.* **32** (2004), 1-28.

3. Muskhelishvili N. Singular Integral Equations. (Russian) Nauka, Moscow, 1966.

Received 17.05.2011; revised 18.10.2011; accepted 18.11.2011.

Author's address:

K. Svanadze A. Tsereteli Kutaisi State University 59, Tamap Mepe St., Kutaisi 4600 Georgia E-mail: kostasvanadze@yahoo.com