Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 25, 2011

ON THE ASYMPTOTICAL BEHAVIOR OF NEUTRONS PHASE DENSITY IN THE CASE AN ISOTROPIC POINT SOURCE

Shulaia D.

Abstract. We investigate the asymptotical behavior of the phase density of neutrons near of the source in the problem for the isotropic point source.

Keywords and phrases: Characteristic equation, eigenfunctions, singular integral.

AMS subject classification: 45B05, 45E05.

We are interested the phase density of the neutrons emitted from single power source which is disposed on the plane and radiating neutrons to the direction $\mu = \mu_0$ with length of the wave $\lambda = \lambda_0$. To this end, we must seek the solution of the equation [1]

$$\mu \frac{\partial G(x_0, \mu_0, \lambda_0 \to x, \mu, \lambda)}{\partial x} + G = \int_a^\lambda \int_{-1}^{+1} K(\lambda, \lambda') G(x_0, \mu_0, \lambda_0 \to x, \mu', \lambda') d\mu' d\lambda',$$
$$x \in (-\infty, +\infty), \quad \mu \in [-1, +1], \quad \lambda \in [a, b]$$

satisfying the boundary condition

$$2\pi\mu(G(x_0^+,\mu_0,\lambda_0\to x,\mu,\lambda) - G(x_0^-,\mu_0,\lambda_0\to x,\mu,\lambda)) = \delta(\mu-\mu_0)\delta(\lambda-\lambda_0)$$
(1)

and satisfying also the addition condition on the infinity

$$\lim_{|x| \to \infty} G(x_0, \mu_0, \lambda_0 \to x, \mu, \lambda) = 0.$$
(2)

Here δ is the Dirac function.

In order that satisfy the condition (2) we shall seek the solution on the form

$$G = \int_{a}^{\lambda} \int_{0}^{1} u(\nu,\zeta) \exp(-\frac{x-x_{0}}{\nu})\varphi_{\nu,(\zeta)}(\mu,\lambda)d\nu d\zeta, \quad x > x_{0}$$
(3)

$$G = -\int_{a}^{\lambda} \int_{-1}^{0} u(\nu,\zeta) \exp\left(-\frac{x-x_{0}}{\nu}\right) \varphi_{\nu,(\zeta)}(\mu,\lambda) d\nu d\zeta, \quad x < x_{0}$$

$$\tag{4}$$

where $\varphi_{\nu,(\zeta)}(\mu,\lambda)$, $\nu \in [-1,+1]$, $\zeta \in [a,b]$, is the singular eigenfunction of the characteristic equation

$$(\nu - \mu)\varphi_{\nu}(\mu, \lambda) = \nu \int_{a}^{\lambda} \int_{-1}^{+1} K(\lambda, \lambda')\varphi_{\nu}(\mu', \lambda')d\mu'd\lambda'$$

which is normalized as follows

$$\int_{a}^{b} \int_{-1}^{1} \varphi_{\nu,(\zeta)}(\mu,\lambda) d\mu d\lambda = 1$$

and represented in the following form [2]

$$\varphi_{\nu,(\zeta)}(\mu,\lambda) = \frac{K(\lambda,\zeta)\theta(\lambda-\zeta)}{\nu-\mu} + (\delta(\zeta-\lambda) - \int_{-1}^{+1} \frac{K(\lambda,\zeta)\theta(\lambda-\zeta)}{\nu-\mu'} d\mu')\delta(\nu-\mu).$$

Here θ is the Heaviside function. In representation of G the function $u(\nu, \zeta)$ is the unknown function and our primary task is to construct u. When $x \to x_0$ then from (3) and (4) we obtain

$$G = \int_{a}^{\lambda} \int_{0}^{1} u(\nu, \zeta) \varphi_{\nu,(\zeta)}(\mu, \lambda) d\nu d\zeta, \quad x > x_{0}$$
$$G = -\int_{a}^{\lambda} \int_{-1}^{0} u(\nu, \zeta) \varphi_{\nu,(\zeta)}(\mu, \lambda) d\nu d\zeta, \quad x < x_{0}$$

From condition (1) for the u we obtain

$$\delta(\mu - \mu_0)\delta(\lambda - \lambda_0) = 2\pi\mu \int_a^\lambda \int_{-1}^1 u(\nu, \zeta)\varphi_{\nu,(\zeta)}(\mu, \lambda)d\nu d\zeta.$$

It is known that the set of singular eigenfunctions is the complete system [2]. In other words we have the next theorem

Theorem. The arbitrary continuous function $\psi(\mu, \lambda)$, $\mu \in [-1+1]$, $\lambda \in [a, b]$ satisfying H^* [3] condition with respect to μ admits representation in the form

$$\psi(\mu,\lambda) = \int_a^\lambda \int_{-1}^1 v(\nu,\zeta)\varphi_{\nu,(\zeta)}(\mu,\lambda)d\nu d\zeta.$$

Besides, it is truth the following equality

$$\int_{a}^{b} \int_{-1}^{1} \mu \varphi_{\nu,(\zeta)}(\mu,\lambda) \tilde{\varphi}_{\nu',(\zeta')}^{*}(\mu,\lambda) d\mu d\lambda = \delta(\nu-\nu')\delta(\zeta-\zeta'), \tag{5}$$

where

$$\tilde{\varphi}_{\nu,(\zeta)}^{*}(\mu,\lambda) = \varphi_{\nu,(\zeta)}^{*}(\mu,\lambda) + \int_{\lambda}^{\zeta} \varphi_{\nu,(\zeta')}^{*}(\mu,\lambda)g(\nu,\zeta,\zeta')d\zeta'$$

and

$$\varphi_{\nu,(\zeta)}^*(\mu,\lambda) = \frac{K(\zeta,\lambda)\theta(\zeta-\lambda)}{\nu-\mu} + (\delta(\zeta-\lambda) - \int_{-1}^{+1} \frac{K(\zeta,\lambda)\theta(\zeta-\lambda)}{\nu-\mu'} d\mu')\delta(\nu-\mu),$$

 $\varphi^*_{\nu,(\zeta)}(\mu,\lambda), \quad \nu \in [-1,+1], \quad \zeta \in [a,\lambda], \text{ is the singular eigenfunction of the characteristic equation}$

$$(\nu - \mu)\varphi_{\nu}^{*}(\mu, \lambda) = \nu \int_{\lambda}^{b} \int_{-1}^{+1} K(\lambda', \lambda)\varphi_{\nu}^{*}(\mu', \lambda')d\mu'd\lambda',$$

which is normalized as follows

$$\int_{a}^{b} \int_{-1}^{1} \varphi_{\nu,(\zeta)}^{*}(\mu,\lambda) d\mu d\lambda = 1$$

and represented in the following form

$$\varphi_{\nu,(\zeta)}^*(\mu,\lambda) = \frac{K(\zeta,\lambda)\theta(\zeta-\lambda)}{\nu-\mu} + (\delta(\zeta-\lambda) - \int_{-1}^{+1} \frac{K(\zeta,\lambda)\theta(\zeta-\lambda)}{\nu-\mu'} d\mu')\delta(\nu-\mu).$$

Here $g(\nu, \zeta, \zeta')$ is unique solution of the equation

$$g(\nu,\zeta,\zeta') - \int_{\zeta'}^{\zeta} S(\nu,\zeta",\zeta')g(\nu,\zeta,\zeta")d\zeta" = S(\nu,\zeta,\zeta'),$$

where

$$S(\nu,\zeta,\zeta') = 2 \int_{-1}^{1} \frac{\nu K(\zeta,\zeta')}{\nu - \mu} d\mu$$
$$- \int_{\zeta'}^{\zeta} \int_{-1}^{1} \frac{\nu K(\lambda,\zeta')}{\nu - \mu} d\mu \int_{-1}^{1} \frac{\nu K(\zeta,\lambda)}{\nu - \mu} d\mu d\lambda - \int_{\zeta'}^{\zeta} K(\lambda,\zeta') K(\zeta,\lambda) d\lambda,$$
$$a \leq \zeta' \leq \zeta \leq b.$$

It follows from the preceding theorem and equation (5) that

$$v = \tilde{\varphi}^*_{\nu,(\zeta)}(\mu_0, \lambda_0).$$

Therefore, now we can write

$$G(x_0,\mu_0,\lambda_0\to x,\mu,\lambda) = \frac{1}{2\pi} \int_a^\lambda \int_0^1 \varphi_{\nu,(\zeta)}(\mu,\lambda) \tilde{\varphi}^*_{\nu,(\zeta)}(\mu_0,\lambda_0) d\nu d\zeta, \qquad x > x_0$$

and

$$G(x_0, \mu_0, \lambda_0 \to x, \mu, \lambda) = \frac{1}{2\pi} \int_a^\lambda \int_{-1}^0 \varphi_{\nu,(\zeta)}(\mu, \lambda) \tilde{\varphi}^*_{\nu,(\zeta)}(\mu_0, \lambda_0) d\nu d\zeta, \quad x < x_0.$$

If we apply the normalization condition for $\varphi_{\nu,(\zeta)}$ and $\varphi^*_{\nu,(\zeta)}$ then for of the neutrons density

$$\rho(x_0 \to x) = 2\pi \int_a^b \int_{-1}^1 \int_a^b \int_{-1}^1 G(x_0, \mu_0, \lambda_0 \to x, \mu, \lambda) d\mu_0 d\lambda_0 d\mu d\lambda_0$$

we can write

$$\rho(x_0 \to x) = \int_0^1 \exp(-|x - x_0| / \nu) R(\nu) d\nu,$$

where

$$R(\nu) = 1 + \int_a^b \int_a^b g(\nu, \zeta, \zeta') d\zeta' d\zeta.$$

Applying the same procedure as in [3,§5.4] for $\rho_{pt}(x_0 \to x)$, where

$$\rho_{pt}(x_0 \to x) = -\frac{1}{2\pi(x - x_0)} \frac{d}{dx} \rho(x_0 \to x),$$

for the small $(x - x_0)$ we obtain

$$\rho_{pt}(x_0 \to x) \approx \frac{1}{4\pi (x - x_0)^2}$$

Thus, obtained the result for the multivelocity case is identical to the result from [3, §5.4] for the onevelocity case. This was expected.

REFERENCES

1. Wigner E.P. Mathematical problems of nuclear reactor theory. *Proc. Amer. Math. Soc.*, **11** (1959), 89-105.

2. Shulaia D.A. Completness theorems in linear multivelocity transport theory. (Russian) *Dokl. Akad. Nauk SSSR*, **259**, 2 (1981), 332-335.

3. Case K.M., Zweifel P.F. Linear Transport Equations. *Addison-Wesley Publishing Company*, 1967.

Received 28.06.2011; revised 27.09.2011; accepted 30.10.2011.

Author's address:

D. Shulaia

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: dazshul@yahoo.com