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ON THE ASYMPTOTICAL BEHAVIOR OF NEUTRONS PHASE DENSITY IN
THE CASE AN ISOTROPIC POINT SOURCE

Shulaia D.

Abstract. We investigate the asymptotical behavior of the phase density of neutrons near

of the source in the problem for the isotropic point source.
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We are interested the phase density of the neutrons emitted from single power
source which is disposed on the plane and radiating neutrons to the direction µ = µ0

with length of the wave λ = λ0. To this end, we must seek the solution of the equation
[1]

µ
∂G(x0, µ0, λ0 → x, µ, λ)

∂x
+G =

∫ λ

a

∫ +1

−1

K(λ, λ′)G(x0, µ0, λ0 → x, µ′, λ′)dµ′dλ′,

x ∈ (−∞,+∞), µ ∈ [−1,+1], λ ∈ [a, b]

satisfying the boundary condition

2πµ(G(x+0 , µ0, λ0 → x, µ, λ)−G(x−0 , µ0, λ0 → x, µ, λ)) = δ(µ− µ0)δ(λ− λ0) (1)

and satisfying also the addition condition on the infinity

lim
|x|→∞

G(x0, µ0, λ0 → x, µ, λ) = 0. (2)

Here δ is the Dirac function.
In order that satisfy the condition (2) we shall seek the solution on the form

G =

∫ λ

a

∫ 1

0

u(ν, ζ) exp(−x− x0
ν

)φν,(ζ)(µ, λ)dνdζ, x > x0 (3)

G = −
∫ λ

a

∫ 0

−1

u(ν, ζ) exp(−x− x0
ν

)φν,(ζ)(µ, λ)dνdζ, x < x0 (4)

where φν,(ζ)(µ, λ), ν ∈ [−1,+1], ζ ∈ [a, b], is the singular eigenfunction of the
characteristic equation

(ν − µ)φν(µ, λ) = ν

∫ λ

a

∫ +1

−1

K(λ, λ′)φν(µ
′, λ′)dµ′dλ′

which is normalized as follows∫ b

a

∫ 1

−1

φν,(ζ)(µ, λ)dµdλ = 1
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and represented in the following form [2]

φν,(ζ)(µ, λ) =
K(λ, ζ)θ(λ− ζ)

ν − µ
+ (δ(ζ − λ)−

∫ +1

−1

K(λ, ζ)θ(λ− ζ)
ν − µ′ dµ′)δ(ν − µ).

Here θ is the Heaviside function. In representation of G the function u(ν, ζ) is the
unknown function and our primary task is to construct u. When x→ x0 then from (3)
and (4) we obtain

G =

∫ λ

a

∫ 1

0

u(ν, ζ)φν,(ζ)(µ, λ)dνdζ, x > x0

G = −
∫ λ

a

∫ 0

−1

u(ν, ζ)φν,(ζ)(µ, λ)dνdζ, x < x0.

From condition (1) for the u we obtain

δ(µ− µ0)δ(λ− λ0) = 2πµ

∫ λ

a

∫ 1

−1

u(ν, ζ)φν,(ζ)(µ, λ)dνdζ.

It is known that the set of singular eigenfunctions is the complete system [2]. In other
words we have the next theorem

Theorem. The arbitrary continuous function ψ(µ, λ), µ ∈ [−1 + 1], λ ∈ [a, b]
satisfying H∗ [3] condition with respect to µ admits representation in the form

ψ(µ, λ) =

∫ λ

a

∫ 1

−1

v(ν, ζ)φν,(ζ)(µ, λ)dνdζ.

Besides, it is truth the following equality∫ b

a

∫ 1

−1

µφν,(ζ)(µ, λ)φ̃
∗
ν′,(ζ′)(µ, λ)dµdλ = δ(ν − ν ′)δ(ζ − ζ ′), (5)

where

φ̃∗
ν,(ζ)(µ, λ) = φ∗

ν,(ζ)(µ, λ) +

∫ ζ

λ

φ∗
ν,(ζ′)(µ, λ)g(ν, ζ, ζ

′)dζ ′

and

φ∗
ν,(ζ)(µ, λ) =

K(ζ, λ)θ(ζ − λ)
ν − µ

+ (δ(ζ − λ)−
∫ +1

−1

K(ζ, λ)θ(ζ − λ)
ν − µ′ dµ′)δ(ν − µ),

φ∗
ν,(ζ)(µ, λ), ν ∈ [−1,+1], ζ ∈ [a, λ], is the singular eigenfunction of the characteris-

tic equation

(ν − µ)φ∗
ν(µ, λ) = ν

∫ b

λ

∫ +1

−1

K(λ′, λ)φ∗
ν(µ

′, λ′)dµ′dλ′,

which is normalized as follows∫ b

a

∫ 1

−1

φ∗
ν,(ζ)(µ, λ)dµdλ = 1
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and represented in the following form

φ∗
ν,(ζ)(µ, λ) =

K(ζ, λ)θ(ζ − λ)
ν − µ

+ (δ(ζ − λ)−
∫ +1

−1

K(ζ, λ)θ(ζ − λ)
ν − µ′ dµ′)δ(ν − µ).

Here g(ν, ζ, ζ ′) is unique solution of the equation

g(ν, ζ, ζ ′)−
∫ ζ

ζ′
S(ν, ζ”, ζ ′)g(ν, ζ, ζ”)dζ” = S(ν, ζ, ζ ′),

where

S(ν, ζ, ζ ′) = 2

∫ 1

−1

νK(ζ, ζ ′)

ν − µ
dµ

−
∫ ζ

ζ′

∫ 1

−1

νK(λ, ζ ′)

ν − µ
dµ

∫ 1

−1

νK(ζ, λ)

ν − µ
dµdλ−

∫ ζ

ζ′
K(λ, ζ ′)K(ζ, λ)dλ,

a ≤ ζ ′ ≤ ζ ≤ b.

It follows from the preceding theorem and equation (5) that

v = φ̃∗
ν,(ζ)(µ0, λ0).

Therefore, now we can write

G(x0, µ0, λ0 → x, µ, λ) =
1

2π

∫ λ

a

∫ 1

0

φν,(ζ)(µ, λ)φ̃
∗
ν,(ζ)(µ0, λ0)dνdζ, x > x0

and

G(x0, µ0, λ0 → x, µ, λ) =
1

2π

∫ λ

a

∫ 0

−1

φν,(ζ)(µ, λ)φ̃
∗
ν,(ζ)(µ0, λ0)dνdζ, x < x0.

If we apply the normalization condition for φν,(ζ) and φ∗
ν,(ζ) then for of the neutrons

density

ρ(x0 → x) = 2π

∫ b

a

∫ 1

−1

∫ b

a

∫ 1

−1

G(x0, µ0, λ0 → x, µ, λ)dµ0dλ0dµdλ

we can write

ρ(x0 → x) =

∫ 1

0

exp(− | x− x0 | /ν)R(ν)dν,

where

R(ν) = 1 +

∫ b

a

∫ b

a

g(ν, ζ, ζ ′)dζ ′dζ.

Applying the same procedure as in [3,§5.4] for ρpt(x0 → x), where

ρpt(x0 → x) = − 1

2π(x− x0)
d

dx
ρ(x0 → x),
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for the small (x− x0) we obtain

ρpt(x0 → x) ≈ 1

4π(x− x0)2
.

Thus, obtained the result for the multivelocity case is identical to the result from [3,
§5.4] for the onevelocity case. This was expected.
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