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ON THE HOMOLOGY THEORY OF THE CLOSED GEODESIC PROBLEM
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Abstract. In this paper we investigate a problem from differential geometry: how many

closed geodesics lie on a closed, compact, Riemannian manifold.
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Let X be a closed, compact, Riemannian manifold. A problem in differential geom-
etry is: how many closed geodesics lie on X? To relate this problem with a topological
problem one considers the free loop space ΛX, all smooth maps from the circle S1 into
X, and the energy functional E : ΛX → R defined by

E(f) =

∫
S1

⟨f ′(s), f ′(s)⟩ds, f ∈ ΛX, ⟨ , ⟩ is the Riemannian metric on X.

Closed geodesics on X are the critical points of the function E. The above question
becomes more subtle when the fundamental group of X is finite, in particular, is trivial.
Using an infinite dimensional Morse theory Gromoll and Meyer proved the following
theorem in 1969:

Theorem 1. Let X be a simply connected closed compact smooth manifold of
dimension greater than 1. If the Betti numbers βi(ΛX;R) grow unbounded, then X has
infinitely many geometrically distinct closed geodesics in any Riemannian metric.

Since the arguments of the theorem work for the Betti numbers βi(ΛX; k) with
respect to any coefficient field k, this result has motivated a question, the ’closed
geodesic problem,’ to find simple criteria in terms of the cohomology algebra H∗(X; k)
of X which imply that the Betti numbers βi(ΛX;k) are unbounded. The space ΛX is
homotopic to the space of all continuous maps S1 → X, so that we denote the latter
space again by ΛX; moreover, we can also assume in the sequel X to be a finite CW -
complex. Let k be a commutative ring with unit. Assume that the ith-cohomology
group H i(ΛX; k) of ΛX is finitely generated as a k-module and refer to the cardinality
of a minimal generating set of H i(ΛX; k), denoted by βi(ΛX;k), as the generalized
ith-Betti number of ΛX. Below we state the aforementioned criteria in its most general
form in the following

Theorem 2. Let X be a simply connected space and k a commutative ring with
unit. If H∗(X; k) is finitely generated as a k-module and H∗(ΛX; k) has finite type,
then the generalized Betti numbers βi(ΛX; k) grow unbounded if and only if H̃∗(X; k)
requires at least two algebra generators.

Theorem 2 was proved by Sullivan and Vigué-Poirrier when k is a field of charac-
teristic zero, and then it was conjectured for k to be a field of positive characteristic: A
simple example provided by the Stiefel manifold V2(R2n+1) shows that a manifold may
have the rational cohomology with one algebra generator, but having infinitely many
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closed geodesics; note also that the cohomology H∗(V2(R2n+1);Z2) has two algebra gen-
erators. Since then a number of papers deals with this conjecture but it remained to
be open even for X to be a finite CW -complex and k a finite field. We prove Theorem
2. The proof relies on a recently constructed by author small algebraic model

(V̄k, d̄h)
π← (RH ⊗ V̄k, dω)

ι← (RHk, dh)

of the free loop fibration
ΩX → ΛX → X

consisting of differential graded algebras (dga’s) in which ι and π are the standard
inclusion and projection respectively. Namely, (RH, dh) → C∗(X;Z) is a filtered ho-
motopy G-algebra(hga) model of C∗(X;Z), the singular cochain complex of X, with
H = H∗(X;Z), RHk = RH ⊗Z k, RHk = T (Vk), Vk = V ⊗Z k, V̄ is the desus-
pension of V, V̄ = s−1V ⊕ k, and the differential d̄h is obtained by restriction of dh
to V. The hga structure on RH in particular means the existence of a binary op-
eration E1,1 : RH ⊗ RH → RH satisfying conditions similar to Steenrod’s cochain
⌣1-operation:

dE1,1(a; b)− E1,1(da; b) + (−1)|a|E1,1(a; db) = (−1)|a|a · b− (−1)|a|(|b|+1)b · a,

so it measures the non-commutativity of the · product on RH. Using the above model
we construct two infinite sequences in H∗(ΛX; k) and take all possible products of their
components to detect a submodule of H∗(ΛX; k) at least as large as the polynomial
algebra k[x, y] that implies the proof of Theorem 2.

An idea of constructing such sequences comes from a recent paper of the author
in which an analogous result is established for the (based) loop space ΩX. In turn,
the aforementioned sequences can be thought of as a certain generalization of W.
Browder’s notion of ∞-implications. Note that Browder’s ∞-implications are used by
J. McCleary to detect a submodule of H∗(ΩX;k) isomorphic to the polynomial algebra
k[x, y] for k a field. On the one hand, a difficulty to lift a sequence from H∗(ΩX;k) into
H∗(ΛX;k) is because of a canonical homomorphism H∗(ΛX; k)→ H∗(ΩX;k) fails to
be a surjection. On the other hand, it is impossible to find a sequence in H∗(ΩX; k)
consisting of iterated powers of some element in H∗(ΩX; k) for k to be a finite field.

Our construction of sequences in H∗(ΛX;k) heavily uses the explicit formula for
the product on the complex (RH ⊗ V̄k, dω). Given a dga (A, d) isomorphic to the
tensor algebra T (V ), the complex (A⊗ V̄ , dω) was in fact known as a reduction of the
Hochschild chain complex of (A, d) that describes the additive structure of H∗(ΛX; k)
when A = C∗(X;k). Namely, the differential dω is given by

dω(u⊗ ā) = du⊗ ā− (−1)|u|(1⊗ s−1)χ(u⊗ da)− (−1)|u|+|a|(ua− (−1)|a||u|au)⊗ 1,

in which χ : A⊗ A→ A⊗ V is a map defined by

χ(u⊗ a) =


0, u⊗ a = u⊗ 1,
u⊗ a1, u⊗ a = u⊗ a1,∑

1≤i≤p(−1)εai+1 · · · apua1 · · · ai−1 ⊗ ai, u⊗ a = u⊗ a1 · · · ap,
p ≥ 2,
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ε = (|ai+1|+ · · ·+ |ap|)(|u|+ |a1|+ · · ·+ |ai|), ai ∈ V. Here a new aspect is to introduce
a multiplication on the above complex satisfying the Leibnitz rule and calculating the
cohomology algebra H∗(ΛX;k). It is well known that the Hochschild chain complex of
the dga C∗(X; k) has a canonical simplicial structure, but the induced product on it
is not geometric, i.e., does not correspond to the product on H∗(ΛX;k). Instead we
have detected an Fn-set structure on it, where Fn is a certain n-dimensional polytope,
called the freehedron; this polytope can be obtained from the standard n-simplex ∆n

by truncations at the initial and terminal vertices. In particular, F0 is a point, F1 is
an interval, F2 is a pentagon, F3 has eight 2-faces (4 pentagon and 4 quadrilateral), 18
edges and 12 vertices (see Fig. 1 below).
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Fig. 1. The freehedra F2 and F3 obtained from ∆2 and ∆3 by truncations.

In general, the freehedra can be thought of as a combinatorial model of a free loop
space. We have had defined an explicit diagonal ∆F of Fn, and then by a combinatorial
analysis of ∆F have determined the required product on the Hochschild chain complex
of C∗(X;k). Now we obtain the product on (RH⊗ V̄k, dω), too. More precisely, denote
⌣1= E1,1 and for u⊗ x, v ⊗ y ∈ RH ⊗ V̄k, let



116 Saneblidze S.

(u⊗ x)(v ⊗ y) =



uv ⊗ 1, (x, y) = (1, 1),

uv ⊗ b̄+ (−1)(|v|+1)(|b|+1)(u `1 b)v ⊗ 1, (x, y) = (1, b̄),

(−1)(|a|+1)|v|uv ⊗ ā+ u(a `1 v)⊗ 1, (x, y) = (ā, 1),

(−1)(|a|+1)|v|uv ⊗ a `1 b

+u(a `1 v)⊗ b̄
+(−1)|a|(|v|+|b|+1)+|v||b|(u `1 b)v ⊗ ā
+(−1)(|a|+|v|)(|b|+1)(u `1 b)(a `1 v)⊗ 1

−
∑

(−1)ϵ1u(a1 `1 v)⊗ a2 `1 b

+
∑

(−1)ϵ2(u `1 b)(a1 `1 v)⊗ ā2
+
∑

(−1)ϵ3(u `1 b2)v ⊗ a `1 b1

+
∑

(−1)ϵ4(u `1 b2)(a `1 v)⊗ b̄1, (x, y) = (ā, b̄),

where da =
∑
a1a2, db =

∑
b1b2 and ϵ1 = |a1||b|+(|a2|+1)|v|, ϵ2 = |a2|(|v|+1)+(|a|+

|v|)|b|, ϵ3 = (|a|+ |b2|)(|v|+1)+ (|a|+ |b1|)|b2|, ϵ4 = (|a|+ |v|)(|b2|+1)+ (|b1|+ 1)|b2|.
Finally, note that by means of the dga (RH ⊗ V̄k, dω) the first sequence is rela-

tively easy to construct rather than the second one in H∗(ΛX; k). In particular, the
construction of the second sequence requires to consider both primary and secondary
cohomology operations on H∗(X;k).
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