Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 25, 2011

A DIFFERENCE SCHEME REPRESENTATION FOR A NONLINEAR KIRCHHOFF EQUATION

Peradze J.

Abstract. The initial boundary value problem for the dynamic string quation $w_{tt} - (\lambda + \frac{2}{\pi} \int_0^L w_x^2(x,t) \, dx) w_{xx}(x,t) = 0$ is considered. To solve it, the difference scheme is written, which is represented in the form convenient for both solution and investigation since the eigenfunctions of a difference operator are use as a basis.

Keywords and phrases: Kirchhoff string equation, difference scheme.

AMS subject classification: 65M06.

1. Statement of the problem. Let us consider the nonlinear equation

$$w_{tt}(x,t) - \left(\lambda + \frac{2}{\pi} \int_0^{\pi} w_x^2(x,t) \, dx\right) w_{xx}(x,t) = 0, \tag{1}$$

$$0 < x < \pi, \quad 0 < t \le T,$$

with the initial boundary conditions

$$w(x,0) = w^{0}(x), \quad w_{t}(x,0) = w^{1}(x),$$
(2)

$$w(0,t) = w(\pi,t) = 0,$$
(3)

$$0 \le x \le \pi, \quad 0 \le t \le T.$$

Equation (1) describing the string vibration was obtained by Kirchhoff in 1876 [1]. A great number of works is dedicated to the investigation of this equation and its generalizations (see e.g. [2] and the bibliography therein).

2. Difference scheme. On the intervals $[0, \pi]$ and [0, T] of the change of arguments x and t we introduce the nets $\omega_h = \{x_i = ih, i = 0, 1, ..., N\}$ and $\omega_{\tau} = \{t_m = m\tau, m = 0, 1, ..., N\}$, and to the rectangle $[0, \pi] \times [0, T]$ we put into correspondence the net

$$\Omega_{h\tau} = \omega_h \times \omega_\tau = \{ (x_i, t_m), \ i = 0, 1, \dots, N, \ m = 0, 1, \dots, M \},\$$

where h and τ are the steps for which we have $h = \frac{\pi}{N}$, $\tau = \frac{T}{M}$. The value of some function defined on the net $\Omega_{h\tau}$ at the node (x_i, t_m) is denoted by w_i^m . Let us approximate equation (1) and conditions (2), (3) by means of a difference scheme which using the standard notation [3] is written in the form

$$w_{\bar{t}t,i}^m - \frac{1}{2} \left(\lambda + \frac{1}{\pi} \sum_{p=1,-1} h \sum_{j=1}^N (w_{\bar{x},j}^{m+p})^2 \right) \sum_{r=1,-1} w_{\bar{x}x,i}^{m+r} = 0, \tag{4}$$

$$i = 1, 2, \dots, N - 1, \quad m = 1, 2, \dots, M - 1, w_i^0 = \omega_i^0, \quad w_i^1 = \omega_i^1, \quad i = 1, 2, \dots, N - 1,$$
(5)

$$w_0^m = w_N^m = 0, \quad m = 0, 1, \dots, M,$$
 (6)

where $\omega_i^0 = w_i^0$, $\omega_i^1 = w^0(x_i) + \tau w^1(x_i) + \frac{\tau^2}{2} \left(\lambda + \frac{2}{\pi} \int_0^{\pi} (w^{0\prime}(x))^2 dx\right) w^{0\prime\prime}(x_i)$. Under the error of the difference scheme (4)-(6) we understand the net function

$$\Delta w_i^m = w(x_i, t_m) - w_i^m.$$

 $i = 0, 1, \dots, N, \quad m = 0, 1, \dots, M.$

(7)

A system of equations for the error has the form

$$\Delta w_{\bar{t}t,i}^{m} - \frac{1}{2} \left(\lambda + \frac{1}{\pi} \sum_{p=1,-1}^{N} h \sum_{j=1}^{N} (w_{\bar{x},j}^{m+p})^{2} \right) \sum_{r=1,-1} \Delta w_{\bar{x}x,i}^{m+r} \\ - \frac{1}{2\pi} \left[\left(\sum_{p=1,-1}^{N} h \sum_{j=1}^{N} (w_{\bar{x}}(x_{j}, t_{m+p}) + w_{\bar{x},j}^{m+p}) \right) \Delta w_{\bar{x},j}^{m+p} \right] \sum_{r=1,-1}^{N} w_{\bar{x}x,i}^{m+r} \\ = \psi_{i}^{m+1,m-1}, \quad i = 1, 2, \dots, N-1, \quad m = 1, 2, \dots, M-1, \quad (8)$$

where

$$\psi_i^{m+1,m-1} = w_{\overline{t}t}(x_i, t_m) - \frac{1}{2} \left(\lambda + \frac{1}{\pi} \sum_{p=1,-1}^N h \sum_{j=1}^N (w_{\overline{x}}(x_j, t_{m+p}))^2 \right) \\ \times \sum_{r=1,-1}^N w_{\overline{x}x}(x_i, t_{m+r}).$$

From (5),(6) and (2), (3) we obtain

$$\Delta w_i^0 = 0, \quad \Delta w_i^1 = \frac{\tau^3}{3!} w_{ttt}(x_i, \theta_i), \quad 0 \le \theta_i \le \tau, \quad i = 1, 2, \dots, N - 1, \tag{9}$$

$$\Delta w_0^m = \Delta w_N^m = 0, \quad m = 0, 1, \dots, M.$$
(10)

3. Replacement of the basis. Using the values of the solution of the difference scheme (4)-(6) at the internal nodes of the set ω_h on the *m*-th layer, i.e. for $t = t_m$, we form the vector \boldsymbol{w}^m . Thus $\boldsymbol{w}^m = (w_i^m)_{i=1}^{N-1}$. Let us write the vector \boldsymbol{w}^m in terms of the basis $\{\boldsymbol{e}^i\}_{i=1}^{N-1}$, where the basis vector \boldsymbol{e}^i is the ort $\boldsymbol{e}^i = (\delta_{ij})_{j=1}^{N-1}$, δ_{ij} is the Kronecker symbol. We have

$$\boldsymbol{w}^m = \sum_{i=1}^{N-1} w_i^m \boldsymbol{e}^i.$$
(11)

Let us replace the basis. On the net ω_h , we consider the following problem of eigenvalues: find a net function μ_j , j = 0, 1, ..., N, and a constant λ such that

$$\mu_{\overline{x}x,j} + \lambda \mu_j = 0, \quad j = 1, 2, \dots, N - 1, \tag{12}$$

$$\mu_0 = \mu_N = 0. \tag{13}$$

As it is known, at any rate for sufficiently large N there exist N-1 linearly independent solutions of this problem, the *i*-th solution, i = 1, 2, ..., N-1, has the form [3] $\mu_i^i =$

 $\sqrt{\frac{2h}{\pi}} \sin ijh, \ \lambda_i = \frac{4}{h^2} \sin^2 \frac{ih}{2}, \ j = 1, 2, \dots, N-1, \ \mu_0^i = \mu_N^i = 0, \ \text{also}, \ A = (A_{ij})_{i,j=1}^{N-1},$ where $A_{ij} = \mu_j^i$ is an orthonormalized matrix.

Let us consider the basis $\{\boldsymbol{\mu}^i\}_{i=1}^{N-1}$, where the basis vector $\boldsymbol{\mu}^i = (\mu_j^i)_{j=1}^{N-1}$. We write the vector \boldsymbol{w}^m in the new basis

$$\boldsymbol{w}^{m} = \sum_{i=1}^{N-1} v_{i}^{m} \boldsymbol{\mu}^{i}, \quad m = 0, 1, \dots, M.$$
(14)

Let us complement the set of coefficients of expansion (14) with values $v_0^m = v_N^m = 0$ and rewrite the difference scheme (4)-(6) using v_i^m . Taking (11)-(14) into account, we obtain

$$v_{\bar{t}t,i}^{m} + \frac{1}{2}\lambda_{i} \left(\lambda + \frac{1}{\pi} \sum_{p=1,-1} h \sum_{j=1}^{N-1} \lambda_{j} (v_{j}^{m+p})^{2} \right) \sum_{r=1,-1} v_{i}^{m+r} = 0, \quad (15)$$
$$i = 1, 2, \dots, N-1, \quad m = 1, 2, \dots, M-1,$$

$$v_i^0 = \nu_i^0, \quad v_i^1 = \nu_i^1, \quad i = 1, 2, \dots, N-1,$$
(16)

$$v_0^m = v_N^m = 0, \quad m = 0, 1, \dots, M.$$
 (17)

Here $\nu_1^p, \nu_2^p, \ldots, \nu_{N-1}^p$ is the solution of the system of linear algebraic equations $\sum_{j=1}^{N-1} A_{ij}\nu_j = \omega_i^p, i = 1, 2, \ldots, N-1, p = 0, 1.$

Now, let rewrite the system for error (8)–(10) in the new basis. Using the values Δw_i^m defined by (7) we construct the vector $\Delta \boldsymbol{w}^m = (\Delta w_i^m)_{i=1}^{N-1}$ and write it in the form

$$\Delta \boldsymbol{w}^{m} = \sum_{i=1}^{N-1} \Delta v_{i}^{m} \boldsymbol{\mu}^{i}, \quad m = 0, 1, \dots, M.$$
(18)

Let us complement the set of coefficients of expansion (18) with values $\Delta v_0^m = \Delta v_N^m = 0$. We introduce into consideration the vector $\boldsymbol{w}(x, t_m) = (w(x_i, t_m))_{i=1}^{N-1}$ and the values $v(x_i, t_m)$ from the expansion

$$\boldsymbol{w}(x,t_m) = \sum_{i=1}^{N-1} v(x_i,t_m) \boldsymbol{\mu}^i.$$
(19)

Taking into account (12)–(14) and (18), (19), by (8)–(10) we obtain

$$\Delta v_{tt,i}^{m} + \frac{1}{2} \lambda_i \left(\lambda + \frac{1}{\pi} \sum_{p=1,-1} h \sum_{j=1}^{N-1} \lambda_j (v_j^{m+p})^2 \right) \sum_{r=1,-1} \Delta v_i^{m+r} + \frac{1}{2\pi} \lambda_i \left(\sum_{p=1,-1} h \sum_{j=1}^{N-1} \lambda_j (v(x_j, t_{m+p}) + v_j^{m+p}) \Delta v_j^{m+p} \right) \sum_{\tau=1,-1} v_i^{m+r} = \varphi_i^{m+1,m-1}, \quad i = 1, 2, \dots, N-1, \quad m = 1, 2, \dots, M-1, \quad (20)$$

$$\Delta v_i^0 = 0, \quad \Delta v_i^1 = \Delta \omega_i, \quad i = 1, 2, \dots, N - 1,$$
 (21)

$$\Delta v_0^m = \Delta v_N^m = 0, \quad m = 0, 1, \dots, M.$$
(22)

Here $\varphi_1^{m+1,m-1}$, $\varphi_2^{m+1,m-1}$, ..., $\varphi_{N-1}^{m+1,m-1}$ and $\Delta \omega_1, \Delta \omega_2, \ldots, \Delta \omega_{N-1}$ are respectively the solutions of the systems of algebraic equations $\sum_{j=1}^{N-1} A_{ij}\varphi_j = \psi_i^{m+1,m-1}$, $i = 1, 2, \ldots, N-1$

1, and $\sum_{j=1}^{N-1} A_{ij} \Delta \omega_j = \Delta w_i^1$, $i = 1, 2, \dots, N-1$.

Comparing the initial and the transformed systems, we come to a conclusion that for solution of the difference scheme, system (15)–(17) is more convenient than system (4)-(6), whereas in investigating the difference method convergence, it is less difficult to obtain a priori estimates from system (20)–(22) as compared with the case of using system (8)–(10). To conclude, it should be noted that by solving the system layerby-layer and finding $v_1^m, v_2^m, \ldots, v_{N-1}^m$ from (15)-(17), we obtain, by virtue of (14), $w_1^m, w_2^m, \ldots, w_{N-1}^m$.

Acknowledgement. The author acknowledges the support under grant 7353 of the Estonian Science Foundation.

REFERENCES

1. Kirchhoff G. Vorlesungen über Mathematische Physik. I. Mechanik. (German) Teubner, Leipzig, 1876.

2. Peradze J. An approximate algorithm for a Kirchhoff wave equation. SIAM J. Numer. Anal. 47, 3 (2009), 2243-2268.

3. Samarskii A.A. Theory of Difference Schemes. (Russian) Second edition. Nauka, Moscow, 1983.

Received 23.06.2011; accepted 27.10.2011.

Author's addresses:

J. Peradze Iv. Javakhishvili Tbilisi State University 1/3, Chavchavadze Av., Tbilisi 0128 Georgia

Georgian Technical University 54, M. Kostava St., Tbilisi 0160 Georgia E-mail: j_peradze@yahoo.com