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AN APPROXIMATE SOLUTION OF ONE SYSTEM OF THE SINGULAR
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Abstract. In the present work it is investigated questions of the approached decision of one

system (pair) of the singular integral equations. The study of boundary value problems for

the composite bodies weakened by cracks has a great practical significance. The system of

the singular integral equations is solved by a collocation method, in particular, a method

discrete singular in cases both uniform, and non-uniformly located knots.
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1. Statement of the problem. Let’s consider system the singular integral
equations containing an immovable singularity (see [1])

1∫
0

[
1

t− x
− a1
t+ x

]
ρ1(t)dt+ b1

0∫
−1

ρ2(t)dt

t− x
= 2πf1(x), x ∈ (0; 1),

b2

1∫
0

ρ1(t)dt

t− x
+

0∫
−1

[
1

t− x
− a2
t+ x

]
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(1)

where ρk(x) is unknown and fk(x) is given real functions, ak, bk are constants, fk(x) ∈
H, ρk(x) ∈ H∗, k = 1, 2.

2. Collocation method. The system (1) of the singular integral equations is
solved by a collocation method, in particular, a method discrete singular (see [2]) in
cases both uniform, and non-uniformly located knots.

A. Algorithm of uniform division.
Decisions of equations system (1) such view (see [1])

ρ1(t) =
ρ∗1(t)√
1− t

, ρ2(t) =
ρ∗2(t)√
1 + t

, (1)

where ρ∗k(t) ∈ H, k = 1, 2.
Let’s enter such distribution of knots for variables of integration and account points

accordingly
t1i = 0 + ih, t2i = −1 + ih, i = 1, 2, · · · , n;

x1j = t1j − h/2, x2j = t2j + h/2, j = 1, 2, · · · , n;

h =
1

n+ 1
.
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The pair of the equations (1) can be presented as follows with the help of quadrature
formulas (see [2])
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(2)

Thus, we have 2n equations with 2n unknowns. The received system of the linear
equations it is possible to solve with the help to one of direct method, for example, by
Gauss modified method.

B. Algorithm of non-uniformly division.
All terms of system (1) of the singular integral equations we will transfer in a

interval (−1, 1). Let’s apply following transformation of variables

x =
x1 + 1

2
, x1 = 2x− 1, x ∈ [0; 1], x1 ∈ [−1;+1];

t =
t1 + 1

2
, t1 = 2t− 1, t ∈ [0; 1], t1 ∈ [−1;+1];

t =
t2 − 1

2
, t2 = 2t+ 1, t ∈ [−1; 0], t2 ∈ [−1;+1];

x =
x2 − 1

2
, x2 = 2x+ 1, x ∈ [−1; 0], x2 ∈ [−1;+1];

As a result of the above stated transformation of variables the system of the integral
equations (1) assumes the following view
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2
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To a finding of unknown functions ρ1

(
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2

)
, ρ2

(
t2 − 1

2

)
we will apply quadra-
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ture formulas of a following view (see [2])
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(3)

where

t1i = cos
2i− 1

2n+ 1
π, i = 1, 2, · · · , n;

t2i = cos
2i

2n+ 1
π, i = 1, 2, · · · , n;

x1j = cos
2j

2n+ 1
π, j = 1, 2, · · · , n;

x2j = cos
2j − 1

2n+ 1
π, j = 1, 2, · · · , n;

A1i =
4π

2n+ 1
sin2 i

2n+ 1
π, i = 1, 2, · · · , n;

A2i =
4π

2n+ 1
sin2 n+ i

2n+ 1
π, i = 1, 2, · · · , n;

Thus we have 2n equations with 2n unknowns as well as at uniform division.

3. Numerical experiments. As we have noted above, for definition of value
of unknown functions in knots we receive system of the equations of order 2n with
2n unknown variable. (2), (3) problems is solved by program system Mathcad. To
the solve of system of the linear algebraic equations it is applied procedure lsolve.
Corresponding graphics of the approached decisions of various specific problems are
constructed.
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