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Abstract. One-dimensional analog of the system of nonlinear partial differential equations

arising in process of vein formation of young leaves is considered. Numerical resolution of

the initial-boundary value problems for this system is done by the finite difference schemes.

Graphical illustrations of the tests experiments are given.

Keywords and phrases: System of nonlinear partial differential equations, vein formation

model, finite difference schemes.

AMS subject classification: 35Q80, 65N06, 65Y99.

The purpose of this note is numerical resolution of following initial-boundary value
problem by the finite difference scheme:

∂U

∂t
=

∂

∂x

(
V
∂U

∂x

)
+ f(x, t), (x, t) ∈ Ω× (0, T ),

∂V

∂t
= −V + g

(
V
∂U

∂x

)
+ ε

∂2V

∂x2
+ φ(x, t), (x, t) ∈ Ω× (0, T ),

U(x, t) = V (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ Const > 0, x ∈ Ω̄,

(1)

where g, U0, V0 are known sufficiently smooth functions, g0 ≤ g(ξ) ≤ G0; T, g0, G0, δ0,
ε are given positive constants; Ω = (0, 1).

If f ≡ φ ≡ 0, ε = 0 then nonlinear equations considered in problem (1) is one-
dimensional analogue of the model arising in process of vein formation of young leaves
[1].

Many scientific works are devoted to this type models with ε = 0 (see, for exam-
ple, [1]-[8] and references therein). Investigation and numerical solution to nonlinear
parabolic type models to which belongs investigated problem (1) when ε ̸= 0 are carried
out in many works as well (see, for example, [9]-[11] and references therein).

On [0, 1] × [0, T ] let us introduce a net with mesh points denoted by (xi, tj) =
(ih, jτ), where i = 0, 1, ...,M ; j = 0, 1, ..., N with h = 1/M, τ = T/N . The discrete
approximation at (xi, tj) is designed by uji , v

j
i and the exact solution to the problem

(1) by U j
i , V

j
i .

Using the usual method of construction of discrete models [12] let us consider the
following finite difference scheme:
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uj0 = ujM = vj0 = vjM = 0, j = 0, 1, ..., N, (4)

u0j = U0,i v0j = V0,i, i = 0, 1...,M. (5)

The following statement takes place.

Theorem. The finite difference scheme (2)-(5) converges to the solution of problem
(1) in the norm of the space Ch with the rate O (τ + h) .

Using simple transformations we give the following algorithm of solving the scheme
(2)-(5): at first we solve system (2) by well known tridiagonal matrix algorithm and
after we solve system (3) by the same algorithm, using in both cases suitable boundary
and initial conditions from (4), (5). Numerous computer test experiments are done by
using above-mentioned algorithm.

Problem (1) for the case ε = 0 is also solved using this algorithm. It is clear that in
this case we have not stated boundary conditions on the function V and suitable part
of (2)-(5) is solved by explicit scheme (3) (ε = 0) and then equation (2) is solved by
above-mentioned algorithm with tridiagonal matrix.

The graphical illustrations of some part of these numerical results are given in Fig.
1.

The graphs in the Fig. 1 illustrate numerical results of problem (1) for the case
ε ̸= 0. Here exact solutions are: U(x, t) = 1

2
x(1− x)(1 + t), V (x, t) = x(1− x)(3 + t3).

Fig. 1. Exact (solid line) and numerical (marked with ×) solutions and differences between exact

and numerical solutions (marked with •).

The graphs below (see Fig. 2) illustrate numerical results of problem (1) for the
case ε = 0.
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Fig. 2. Exact (solid line) and numerical (marked with ×) solutions and differences between exact

and numerical solutions (marked with •).
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