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Abstract. In this paper we used Darboux transformation technique for investigation Sta-

tionary Schrödinder two dimensinal equation and s.c. main Vekua equation.
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The basic fact and definitions. The theory of pseudoanalytic functions have the
goal of applying complex analysis methods to systems of partial differential equations
which are more general that Caushy-Riemann systems [1], [2]. Recently in [3] give
new application of the theory of pseudoanalytic functions to differential equations of
mathematical physics.

The canonical form of a uniformly elliptic linear first-order system for two desired
real-valued functions in a domain of the complex plane has the form

wz = a(z)w + b(z)w, (1)

which is know as Carleman-Bers-Vekua system. If f is a real valued function, then

wz =
fz
f
w (2)

is called the corresponding main Vekua equation. In [3] author’s applications of pseu-
doanalytic functions to differential equations of mathematical physics are based on the
factorization of a second order differential operator in a product of two first order dif-
ferential operators whose one of these two factors leads to a main Vekua equation. In
particular it is show, that if f, h, ψ are real-valued functions, f, ψ ∈ C2(Ω), Ω ⊂ C and
besides f is positive particular solution of the two dimensional stationary Schrodinger
equation

(−∆+ h)f = 0 (3)

in domain Ω ⊂ C, where ∆ = ∂2

∂x2
+ ∂2

∂y2
is two dimensional Laplase operator, then

(∆− h)ψ = 4(∂z +
fz
f
C)(∂z −

fz
f
C)ψ = 4(∂z +

fz
f
C)(∂z −

fz
f
C)ψ, (4)

where C denotes the operator of complex conjugation.
Let w = w1 + iw2 be a solution of the equation (2). Then the functions u = f−1w1

and v = fw2 are the solutions of the following conductivity and associated conductivity
equations

div(f 2∇u) = 0, and div(f 2∇u) = 0, (5)
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respectively. The real and imaginary part of the solution of the equation (2) w1 and
w2 are solutions of the stationary Schrodinger and associated stationary Schrödinger
equations

−∆w1 + r1w1 = 0 and −∆w2 + r2w2 = 0, (6)

respectively, where r1 =
∆f
f
, r2 =

2(∇f)2
f2
− r1, ∇f = (fx, fy) and (∇f)2 = f 2

x + f 2
y .

In other hand it is known that the elliptic equation

∂z∂zψ + hψ = 0 (7)

is covariant with respect to the Darboux transformation [4]

ψ → ψ[1] = θ(ψ, ψ1)ψ
−1
1 , θ(ψ, ψ1) =

∫ (z,z)

(z0,z0)

Ω, (8)

h[1] = h+ 2∂z∂zlnψ1, (9)

where ψ1 is a fixed solution of equation (7) and Ω is closed 1-differential form

Ω = (ψ∂zψ1 − ψ1∂zψ)dz − (ψ∂zψ1 − ψ1∂zψ)dz.

Here covariant properties means, that ψ[1] satisfies the following equation

∂z∂zψ[1] + h[1]ψ[1] = 0.

From the equality dΩ = 0 follows, that the function θ(ψ1, ψ) in (8) does not depend
on path of integration.

Main result.
Theorem 1. Let w = w1 + iw2 is the solution of the main Vekua equation

wz =
ψ1z

ψ1

w. (10)

Then w1 = ψ1 and w2 = −1
2
ψ[1], where ψ1 is the real positive solution of the equation

−∆ψ + hψ = 0, (11)

h = △ψ1

ψ1
and ψ[1] its Darboux transformation defined by (8), (9).

Conversely, if ψ is the real positive solution of the equation (11) and ψ[1] its Darboux
transformation, then the solution of main Vekua equation (10) equal to w = ψ1−i12ψ[1].
First part of the theorem follows from (6). Here we prove the second part of theorem.
Let ψ is real solution of (11), then in this case the Darboux transformation (8),(9) has
the form

h[1] = h− 2∆lnψ1 and ψ[1] = 2iψ−1
1 Im

∫
(ψψ1z − ψzψ1)dz.

We seek the solution of the equation (10) in the form w = ψ+ iw2, where ψ is solution
of (11). Then

ψ1z + iw2z =
ψ1z

ψ1

ψ − iψ1z

ψ1

w2,
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from this the solution of the corresponding homogenous equation is w2 = C(z)
ψ1
, where

C(z) is arbitrary holomorphic function. Let w2 =
C(z,z)
ψ1

be a solution of above equation.
Then

ψz + i
Cz
ψ1

− i ψ1z

(ψ1)2
C(z, z) =

ψ1z

ψ1

ψ − i ψ1z

(ψ1)2
C(z, z)⇒

⇒ Cz = −i(ψψ1z − ψzψ1)⇒ C(z, z) = −i
∫
(ψψ1z − ψzψ1)dz + C̃(z).

From this we obtain that

w2 = ψ−1
1 (b(z)− i

∫
(ψψ1z − ψzψ1)dz).

We chouse b(z) in last expression such, that w2 was real. Then w2 = ψ−1
1 Im

∫
(ψψ1z −

ψzψ1)dz, from this follows, that −2iw2 = ψ[1], therefore w = ψ1−i12ψ[1] is the solution
of (10).

Here we give new formulation and proof of Theorem 1.
Theorem 2. 1)Let W = W1+ iW2 is the solution of the equation Wz =

fz
f
W, then

W1 and W2 related to by Darboux transformation W2 = iW1[1] and W1 = −iW1[1].
2) If W1 is a solution of the equation (△−△f

f
)ψ = 0, then W1−W1[1] is the solution

of the equation Wz =
fz
f
W.

3) If W2 is the solution of the equation (△+△f
f
−2(∇f

f
)2)ψ = 0, then −iW2[1]+iW2

is a solution of the equation Wz =
fz
f
W.

From the Theorem 33 [3] follows, that W1 + iW2 = W is the solution of the equation
Wz =

fz
f
W, then

W2 = f−1A[if 2∂z(f
−1W1)] and W1 = −fA[if

2
∂z(fW2)],

where A[ϕ] = 2Re
∫
ϕdz = 2Im

∫
iϕdz. Therefore,

W2 = −f−12Im

∫
f 2∂z(f

−1W1)dz and W1 = f2Im

∫
f−2∂z(fW2)dz.

Consider the equation (△− △f
f
)ψ = 0 and take the function f as particular solution

of this equation, then by Theorem 33 [3] the functionW1 is the solution of this equation.
Consider the Darboux transformation W1 :

W1 → W1[1] = f−1

∫
Ω(W1, f),

Ω(W1, f) = (W1fz −W1zf)dz − (W1fz −W1zf)dz = 2iIm[f 2∂z(f
−1W1)],

W1[1] = f−12iIm

∫
f 2∂z(f

−1W1)dz.

Therefore W2 = iW1[1].



On the Darboux Transformation for ... 47

Now, consider the function 1
f
as particular solution of the equation (△− △f

f
)ψ = 0,

then from Theorem 33 [3] follows, that W2 is a solution of this equation. Consider the
Darboux transformation of W2:

W2 → W2[1] = (
1

f
)−1

∫
Ω(W2, f

−1) = f

∫
Ω(W2, f

−1),

Ω(W2, f
−1) = (W2∂z(

1

f
)−W2z

1

f
)dz − (W2∂z(

1

f
)−W2z

1

f
)dz =

= (−W2
fz
f 2
−W2z

1

f
)dz +

1

f 2
(W2fz +W2zf)dz = 2iIm[f−2∂z(fW2)].

Therefore, W1 = −iW2[1].
Remark. In [5] the authors studied intertwining relations, supersymmetry and

Darboux transformations for time-dependent generalized Schrodinger equations and
obtained intertwiners in an explicit form, it means that it is possible to construct
arbitrary-order Darboux transformations for some class of equations. The authors de-
velopes a corresponding supersymmetric formulation and proves equivalence of the Dar-
boux transformations with the supersymmetry formalism. In our opinion the method
given in this paper it is possible to use in this direction also.
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