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THE NEUMANN BVP OF THERMOELASTICITY FOR A TRANSVERSALLY
ISOTROPIC PLANE WITH CURVILINEAR CUTS

Bitsadze L.

Abstract. In the present paper the second (Neumann type) boundary value problem of the

theory of thermoelasticity is investigated for a transversally isotropic plane with curvilinear

cuts. For solution we used the potential method and constructed the special fundamental

matrices, which reduced the problem to a Fredholm integral equations of the second kind.The

solvability of a system of singular integral equations is proved by using the potential method

and the theory of singular integral equations. For the equation of statics of thermoelasticity

we construct one particular solution and we reduce the solution of the second BVP problem

of the theory of thermoelasticity to the solution of the second BVP problem for the equation

of transversally-isotropic body.
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Introduction. In this present paper the Neumann (second) boundary value prob-
lem (BVP) of the theory of thermoelasticity is investigated for a transversally-isotropic
plane with curvilinear cuts. The BVP for domains with cuts were studied by a lot of
authors by many different methods,for example: The boundary value problems of the
theory of elasticity for anisotropic media with cuts were considered in [1,2]. In this
paper we intend this result to BVP of the theory of thermoelasticity for the equations
transversally-isotropic thermoelastic body.

In the present paper for solution we used the potential method and constructed
the special fundamental matrices, which reduced the problem to a Fredholm integral
equations of the second kind.The solvability of a system of singular integral equations
is proved by using the potential method and the theory of singular integral equations.
For the equation of statics of thermoelasticity we construct one particular solution and
we reduce the solution of the second BVP problem of the theory of thermoelasticity
to the solution of the second BVP problem for the equation of transversally-isotropic
body.

Basic equation and BVP. Here we shall be concerned with the plane problem of
thermoelasticity (it is assumed that the second component of the three-dimensional dis-
placement vector equals to zero and the other components u1, u3 and u4 depend only on
the variables x1, x3). In this case the basic two-dimensional equations thermoelasticity
for the transversally-isotropic body can be written as follows [3]

C(∂x)u = Bgradu4, (1)

∆4u4 = a4
∂2u4
∂x21

+
∂2u4
∂x23

= 0, j = 0, 1, (2)
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where
C(∂x) = ∥Cpq(∂x)∥2x2, B = ∥Bpq∥2x2, B11 = β1, B22 = β′,

B12 = B21 = 0, C11(∂x) = c11
∂2

∂x21
+ c44

∂2

∂x23
, C21(∂x) =

C12(∂x) = (c13 + c44)
∂2

∂x1∂x3
, C22(∂x) = c11

∂2

∂x21
+ c44

∂2

∂x23
,

cpq are Hooke’s coefficients, β = c13α
′+2α(c11−c66), β′ = c33α

′+2αc13, a4 =
k

k′
, α, α′

are coefficients of temperature extension, k, ḱ are coefficients of thermal conductivity,
u = (u1, u3) is a displacement vector, u4 is the temperature of body.

Let the plane be weakened by curvilinear cuts lj = ajbj, j = 1, 2, .., p. Assume
that the cuts lj, j = 1, ..., p, are simple nonintersecting open Lyapunov’s arcs. The
direction from aj to bj is taken as the positive one on lj. The normal to lj will be
drawn to the right relative to motion in the positive direction. Denote by D the plane

with curvilinear cuts lj, j = 1, 2, .., p, l =
p∪
j=1

lj. Let the domain D is filled by

homogeneous transversally-isotropic material with the coefficients cpq.
We introduce the notations: z = x1+ ix3, ζk = y1+αky3, τk = t1+αkt3, σk =

zk − ςk, zk = x1 + αkx3, τ = t1 + it3.
For equations (1),(2) we pose the following second (Neumann) boundary value

problem of static of the theory of thermoelasticity.

Neumann BVP. Find a regular solution of the equation (1),(2) in D, when the

stress vector and
∂4u4
∂n

are given on both sides of the arcs lj, j = 1, 2, ..., p. In addition,

it is assumed that the principal vector of external force acting on l, stress vector and the

rotation at infinity are zero. If we denote by [Tu]+([Tu]−),
[
∂4u4
∂n

]+( [∂4u4
∂n

]− )
the

limits on l from the left (right), then the boundary conditions of the problem can be
written as follows:

[Tu]+(z) = f+(z), [Tu]− (z) = f−(z),[
∂4u4
∂n

]+
= f+

4 (z),

[
∂4u4
∂n

]−
= f−

4 (z).

where T (∂x, n)u is a stress vector

T (∂x, n)u =

 c11n1
∂

∂x1
+ c44n3

∂

∂x3
c13n1

∂

∂x3
+ c44n3

∂

∂x1

c44n1
∂

∂x1
+ c13n3

∂

∂x1
c44n1

∂

∂x1
+ c33n1

∂

∂x3

u,

∂4
∂n

= a4n1
∂

∂x1
+ n3

∂

∂x3
,

f+, f−, f+
4 , and f−

4 are the known functions on l of the Hölder class H, which have
derivatives in the class H∗ (for the definitions of the classes H and H∗ see[4]) and
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satisfying at the ends aj and bj of lj, the conditions

f+(aj) = f−(aj), f+(bj) = f−(bj),

f+
4 (aj) = f−

4 (aj), f+
4 (bj) = f−

4 (bj).

It is obvious that displacement vector discontinuities along the cut lj generate a singular
stress field in the medium. Hence it is of interest for us to study the solution behavior
in the neighborhood of the cuts.

Further we assume that the temperature u4 is known, when x ∈ D. Substitute the
function u4 in (1) and search the particular solution of the following equation

C(∂x)u = gradu4.

It is easy to prove that u0(x) is a particular solution of the equation (1)

u0(x) = −
1

2π

∫
D

∫
Γ(x− y)gradu4(y)dv, (3)

where Γ(x− y) is the basic fundamental matrix for equation (C∂x)u = 0,

Γ(x− y) = 2Im
3∑
2

∥A(k)
pq ∥2x2 lnσk,

A
(k)
11 =

i(−1)k(c44 − c33ak)
c44c33(a2 − a3)

, A
(k)
12 =

(−1)k(c44 + c13)

c44c33(a2 − a3)
, αk = i

√
ak,

A
(k)
22 =

i(−1)k(c11 − c44ak)
c44c33(a2 − a3)

, σk = x1 − y1 + αk(x3 − y3),

ak, k = 2, 3 are the positive roots of a characteristic equation

c44c33a
2
k − [c11c33 + c244 − (c13 + c44)

2]ak + c44c11 = 0.

In (3) gradu4 is a continuous vector in D along with its first derivatives and satisfy
the following condition at infinity

gradu4 = O(|x|−1−α), α > 0.

Thus the general solution of the equation (1) is u = V + u0, where

C(∂x)V = 0, (4)

[TV ]+) = f+(z)− [Tu0]
+ = F+(z),

[TV ]− = f−(z)− [Tu0]
− = F−(z).

We seek the solution of the problem (4) in the form a single-layer potential

V (x) =
1

π
Re

3∑
k=2

Q(k)

∫
l

ln(zk − ζk)[g(y) + ih(y)]dyS, (5)
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where g and h are unknown real density vectors, from the Holder class,

Q(k) =

(
q
(k)
11 q

(k)
21

q
(k)
12 q

(k)
22

)
L,

q
(k)
11 =

(−1)k(c13 + c33ak)

c33(a2 − a3)
, q

(k)
12 = −(−1)k(c13ak + c11)

c33αk(a2 − a3)
, αk = i

√
ak,

q
(k)
21 = −(−1)k(c33ak + c13)

c33αk(a2 − a3)
, q

(k)
22 = −(−1)k(c11 + c13ak)

akc33(a2 − a3)
, k = 2, 3,

L =
c33(
√
a2 +

√
a3)

c11c33 − c213

(
−1 0
0 −√a2a3

)
.

From (5), upon acting the operation T (∂x, n) on the vector V , we get

T (∂x, n)V (x) =
1

π
Re

3∑
k=2

P(k)

∫
l

∂ln(zk − ζk)
∂sx

[g(t) + ih(t)]dS, (6)

where

P(k) = L(k)L, L(k) = (−1)k c11c33 − c
2
13

c33(a2 − a3)

 αk − 1

−1 1

αk

 .

From (6) to define the unknown density we obtain the following system of singular
integral equation of the normal type

[T (∂x, n)V (x)]∓ = ∓g(z) + 1

π
Re

3∑
k=2

P(k)

∫
l

∂ln(zk − ζk)
∂sz

[g(y) + ih(y)]dyS = F±(z),

(7)
∂

∂s
= n3

∂

∂x1
− n1

∂

∂x3
.

From here we deduce that

2g(z) = F+(z)− F−(z),

1

π
Re

3∑
k=2

iP(k)

∫
l

∂ln(zk − ζk)
∂sz

h(y)dyS =
F+(z) + F−(z)

2

− 1

π
Re

3∑
k=2

P(k)

∫
l

∂ln(zk − ζk)
∂sz

g(y)dyS = Ω(z), z ∈ l.

(8)

Thus, we have defined the vector g on l. It is not difficult to verify, that g ∈ H, g′ ∈
H∗, and Ω ∈ H,Ω′ ∈ H∗. (8) is a system of singular integral equation of normal type
with respect to the vector h. We seek the solution of the system (8) in the class h0 (for
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the definition of the class h0 see [4]). Points aj and bj are nonsingular ones and the
total index in the class h0 is equal to −2p. Let’s prove that the adjoint homogeneous
equation corresponding to the system (8) has only the trivial solution in the adjoint
class.

The adjoint homogeneous system of singular integral equations has the form

1

π
Re

4∑
k=1

LL(k)

∫
l

∂ln(tk − tk0)
∂s

ν(t)ds = 0. (9)

If the solution of equation (8) in the adjoint class exist, it will satisfy the Hölder’s
condition on l, vanishing at the points aj and bj, j = 1, 2, ..p, and having the derivatives
in the class H∗ ([4]).

Multiplying the system (9) by matrix a = L−1, and taking into account the
identity aLLk = P(k)a, we obtain

1

π
Re

3∑
k=2

P(k)

∫
l

∂ln(tk − tk0)
∂s

aν(t)ds = 0. (10)

Let’s assume that (10) has nontrivial solution ν0 in the adjoint class and construct
the potential

u0(z) =
1

π
Re

3∑
k=2

Q(k)

∫
l

∂ln(tk − zk)
∂s

aν0(t)ds. (11)

From (11) we obtain

T (∂z, n)u0 =
∂Φ(z)

∂s
,

where

Φ(z) =
1

π
Re

3∑
k=2

P(k)

∫
l

∂ln(tk − zk)
∂s

aν0(t)ds.

By virtue of (9) it is obvious that Φ±(t0) = 0, t0 ∈ l.On the basis of the uniqueness
theorem we conclude, that u0(t0) = 0. Then from equality u+0 −u−0 = 2constν0, it follows
that ν0 = 0, t ∈ l. Consequently, it follows that the systems (9) and (10) have only
the trivial solution.

Thus the homogeneous system corresponding to the system (8) has only 2p lin-
early independent solution. Therefore, the corresponding nonhomogeneous system is
solvable in the adjoint class and the solution depends on the 2p arbitrary constants
K1, K2, .., K2p. The choice of these constants stipulates by conditions follows from the
single-valuedness of the displacement vector. The displacement vector obtains the
increment, while going around lj, that has to vanish∫

l

h(t)ds =
c33
√
a2a3 − c13

c33(
√
a2 +

√
a3)
√
a2a3

(
0
√
a2a3

−1 0

)∫
l

[F−(t)− F+(t)]ds, (12)
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Hence (12) is an algebraic equation with respect to unknown constants Kj. Let’s
prove that the determinant of this system is not zero. In fact, let’s take the homoge-
neous system, corresponding to the conditions

F+ = 0, F− = 0, (TU)∞ = 0.

Supposing the solution K
(0)
j , j = 1, ..2p, nontrivial, we construct the potential

U0(z) =
1

π
Re

3∑
k=2

Q(k)

∫
l

ln(tk − zk)h0(t)ds, (13)

where h0 is a linear combination of solution h(j). h0 =
4p∑
k=1

K
(0)
j h(j), and h(j) are linearly

independent solutions of the homogeneous equation corresponding to (7). h(j) have to
satisfy the following condition

∫
lj

h(0)ds = 0, j = 1, .., p.

Then the potential (13) is regular at infinity and by the uniqueness theorem U0 = 0.
But we have the following equality(

∂U0

∂s

)+

−
(
∂U0

∂s

)−

= Lh(0) = 0.

Hence we conclude that Kj = 0, which contradicts the assumption. Thus the
solvability of the problem is proved.

Repeating word by word the above reasoning we can show that

u4 = Im
1

πi
√
a4

∫
l

ln(z4 − ς4)(g4 + ih4)dyS,

where z4 = x1 + i
√
a4x3, ς4 = y1 + i

√
a4y3, 2g4(y) = f+

4 (y) − f−
4 (y), and h4 is a

solution of the following integral equation

1

π
Re

∫
l

∂

∂s
ln(z4 − ς4)h4(y)dyS =

f=
4 + f−

4

2
− 1

π
Im

∫
l

∂

∂s
ln(z4 − ς4)g4(y)dyS.

Here we assume that
∫
l

f±
4 ds = 0.

Let us consider a particular case, when the plane has only one rectilinear cut ab
along the real axis. Assuming that the principal vector of external forces vanishes at
infinity. Then the stress vector outside of the segment ab is calculated by the formula

TU0(z) =
1

2π
Re

3∑
k=2

P(k)

∫
l

f+(t)− f−(t)

t− zk
dt+

1

X(zk)

∫
l

X+(t)(f+(t) + f−(t))

t− zk
dt

 ,
∂u

(0)
4 (z)

∂n
=

1

2π
Re

∫
l

f+
4 (t)− f−

4 (t)

t− z4
dt+

1

X(z4)

∫
l

X+(t)(f+
4 (t) + f−

4 (t))

t− z4
dt

 ,
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where X(zk) =
√
zk − a)(b− zk), k = 2, 3, 4 is a holomorphic function on the plane

cut along the arc ab and X+(t) =
√
t− a)(b− t).
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