Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 25, 2011

CATEGORY OF A-GROUPS OVER A RING ${\cal A}$

Amaglobeli M.

Abstract. The notion of an A-group over a ring A is introduced in three different ways. The key idea consists in realizing a tensor completion of an A-group in the form of a concrete structure using free products with union. As a result, the description of free A-groups and free A-products is obtained in terms of free group structures.

Keywords and phrases: A-group, tensor completion, free A-group, free product of A-groups.

AMS subject classification: 20B07.

Introduction. In the present paper, for an arbitrary associative ring with unity we define a new category of A-groups in three different ways. In Lyndon [1], the general notion of an A-group was introduced and some results on free A-groups were obtained. For a limited class of (so-called binomial) rings, in his famous work [2] F. Hall formulated for the first time the axiomatic notion of a nilpotent A-group which turned out very productive in the general theory of nilpotent groups. In [3], A. Myasnikov and V. Remeslennikov refined Lyndon's definition of an A-group by introducing one more additional axiom, according to which all abelian subgroups of an A-group are ordinary A-modules. This refinement is a natural generalization of an A-module to the non-commutative case. In [3], the basic notions of the theory of A-groups are given in refined form and the tensor completion structure which is the key structure in the category of A groups is defined. The tensor completion is used in this paper in defining free structures in the category of A-groups, including the notion of an A-free group.

1. Basic definitions and examples.

1.1. Let A denote an arbitrary associative ring with unity, and G a group. Let us enrich the group language $L_{gr} = \langle \cdot, -1, e \rangle$ as follows: $L_{gr} \cup \{f_{\alpha}(x) \mid \alpha \in A\}$ where $f_{\alpha}(x)$ is a unary operation denoted by $f_{\alpha}(g) = g^{\alpha} \forall g \in G$.

Definition 1. The set G will be called a **Lyndon** A-group if on it the operations \cdot , $^{-1}$, e, $f_{\alpha}(x)$ are defined and the following axioms are fulfilled

I. Group axioms;

II.
$$g^1 = g, g^0 = e, e^{\alpha} = e,$$

 $g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, g^{\alpha\beta} = (g^{\alpha})^{\beta},$
 $(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h$
for any $\alpha, \beta \in A$ and $g, h \in G$.

Since Axioms I and II are identities, we can speak of a veriety of A-groups, A-isomorphisms, A-homomorphisms, free A-groups. Let \mathfrak{L}_A denote the category of all Lyndon A-groups with A-homomorphisms.

Definition 2. Let $G, H \in \mathfrak{L}_A$. Then a homomorphism $\varphi : G \to H$ is called an *A*-homomorphism if $(g^{\alpha})^{\varphi} = (g^{\varphi})^{\alpha}$ for any $g \in G, \alpha \in A$.

1.2. An A-torsion-free group

Definition 3. An element g of a group $G \in \mathfrak{L}_A$ is called **periodic** if $g^{\alpha} = e$ for some $0 \neq \alpha \in A$. A group G that does not contain non-unit periodic elements is called an A-torsion-free group.

Proposition 1. The set $O(g) = \{ \alpha \in A | g^{\alpha} = e \}$ is the right ideal in a ring A (the ordinal ideal of an element g).

Let us consider a set of axioms(quasi-identities) for groups from the class \mathfrak{L}_A :

$$\forall e \neq g \in G \ g^{\alpha} = e \longrightarrow g = e.$$

As easily seen, all A-torsion-free A-groups form a quasi-variety of A-groups.

1.3 A-group categories. In [3], A. Myasnikov and V. Remeslennikov introduced a new category of A-groups by adding one more axiom

(MR):
$$\forall g, h \in G \ [g,h] = 1 \longrightarrow (gh)^{\alpha} = g^{\alpha}h^{\alpha}$$
.

It is obvious that all A-modules over a ring A satisfy the (MR) axiom. An example given in [3] shows that \mathfrak{M}_A is a proper subclass in \mathfrak{L}_A .

Examples. Most of natural examples of A-groups lie in the class \mathfrak{M}_A :

- 1) An arbitrary group is a Z-group;
- 2) an abelian divisible group from $L_{\mathbb{Q}}$ is a \mathbb{Q} -group;
- 3) a group of the period m is a $\mathbb{Z}/m\mathbb{Z}$ -group;
- 4) an arbitrary A-operator group from \mathfrak{L}_A with a ring of operators A is an A-group;
- 5) a module over a ring A is an abelian A-group;
- 6) a free A-group from \mathfrak{L}_A is an \mathfrak{L}_A -group from \mathfrak{A} ;
- 7) an arbitrary nilpotent A group over a binomial ring A, which was introduced by F. Hall in [2], is an A-group from \mathfrak{M}_A (see Subsect. 2.2);
- 8) an arbitrary pro-*p*-group is a $\mathbb{Z}_{p^{\infty}}$ -group over a ring of integer *p*-adic numbers $\mathbb{Z}_{p^{\infty}}$;
- 9) an arbitrary pro-finite group is a $\widehat{\mathbb{Z}}$ -group, where $\widehat{\mathbb{Z}}$ is the total completion \mathbb{Z} in pro-finite topology;
- 10) a complex (real) unipotent Lie group is a \mathbb{G} -group (\mathbb{R} -group).

2. Nilpotent A-groups

2.1 Let c > 1 be a natural number. Denote by $\mathfrak{N}_{c,A}$ the category of nilpotent A-groups of nilpotence step c from the class \mathfrak{L}_A , i.e. of those A-groups for which the identity

$$\forall x_1, \dots, x_{c+1} \ [x_1, \dots, x_{c+1}] = 1$$

is fulfilled.

Denote by $\mathfrak{N}_{c,A}^{\circ}$ the category of nilpotent groups of step c, for which the (MR) axiom holds true. The structure of A-groups without the (MR) axiom is very complicated and that is why only A-groups with the property (MR) are investigated in most papers. In what follows we will consider only A-groups with this axiom.

2.2. Hall nilpotent groups. In order to introduce this notion we have to restrict the class of considered rings.

Definition 4. A ring A is called binomial if A is an integrity domain with \mathbb{Z} as a subring and contains, along with every element α , all binomial coefficients

$$\left(\frac{\alpha}{n}\right) = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}, \ n \in \mathbb{Z}.$$

Definition 5. A nilpotent group G of nilpotence step c is **called a Hall** A-group if for any x from G and α from A, an element $x^{\alpha} \in G$ is defined uniquely and the following axioms are fulfilled $(x, y, x_1, \ldots, x_n \text{ are arbitrary elements from } G; \alpha, \beta$ are arbitrary elements from A):

1)
$$x^1 = x, x^{\alpha+\beta} = x^{\alpha}x^{\beta}, x^{\alpha\beta} = (x^{\alpha})^{\beta};$$

2)
$$(y^{-1}xy)^{\alpha} = y^{-1}x^{\alpha}y;$$

3) $x_1^{\alpha} x_2^{\alpha} \cdots x_n^{\alpha} = (x_1, x_2, \dots, x_n)^{\alpha} \tau_2(x)^{\binom{\alpha}{2}} \cdots \tau_c(x)^{\binom{\alpha}{c}},$ where $\tau_k(x)$ is the k-th Petrescu word of x_1, x_2, \dots, x_n .

Let us describe Petrescu words in more detail. Assume that x_1, x_2, \ldots, x_n is the base of a free group F. For each natural k the k-th Petrescu word $\tau_k(x_1, x_2, \ldots, x_n) = \tau_k(x)$ is defined recurrently from the relation

$$x_1^k x_2^k \cdots x_n^k = \tau_1(x)^k \tau_2(x)^{\binom{k}{2}} \cdots \tau_{k-1}(x)^{\binom{k}{k-1}} \tau_k(x).$$

In particular, $\tau_1(x) = x_1 x_2 \cdots x_n$; $\tau_2(x) = \prod_{i>j} [x_i, x_j] \pmod{\gamma_3(F)}$.

Denote the category of Hall A-groups by $\mathfrak{H}\mathfrak{N}_{c,A}$. We are going to show that the structure of groups from $\mathfrak{N}_{c,A}$ much differs from the structure of groups from $\mathfrak{H}\mathfrak{N}_{c,A}$. To this end, following [4] we recall the structure of a free A-group in the variety $\mathfrak{H}\mathfrak{N}_{2,A}$. Our consideration is confined to two binomial rings $A = \mathbb{Q}[t]$, $A = \mathbb{Q}(t)$, where \mathbb{Q} is the field of rational numbers.

Denote by G_0 a free 2-step nilpotent A-group in the category $\mathfrak{H}_{2,A}$ with generators x, y. It is well known that the Maltsev base of this group consists of three elements x, y, [y, x]. The general form of an element $g \in G_0$ is

$$g = x^{\gamma} y^{\delta} [y, x]^{\varepsilon}, \ \gamma, \delta, \varepsilon \in A.$$

In particular, in this group the commutant G'_0 is a free A-module of rank 1 with generator [y, x].

If now G is a free A-group in the variety $\mathfrak{N}^0_{2,A}$, then in [4] it is shown that G' is a free A-module of infinite rank and the base of this module is found.

3. Free products of A- groups. The tensor completion, which is the basic operation in the class of A-groups \mathfrak{M}_A , is investigated in the paper [3]. For modules, it generalizes in a natural manner the notion of expansion of a ring of scalars to the non-commutative case [5]. The ideas of this generalization for the class of nilpotent groups are stated in [6]. Here the tensor completion is used in defining free structures in the category of A-groups [7], including the notion of an A-free group. For the completeness of our discussion, we recall here the definition of a tensor completion.

Definition 6. Let G be an A-group, $\mu : A \to B$ be a ring homomorphism. Then a B-group G^B is called a **tensor** B-completion of the A-group G if G^B satisfies the following universal property:

- 1) there exists an A-homomorphism $\lambda : G \to G^B$ such that $\lambda(G)$ B-generates G^B , i.e. $\langle \lambda(G) \rangle_B = G^B$;
- 2) for any *B*-group *H* and *A*-homomorphism $\varphi : G \to H$ which is compatible with μ (i.e. such that $(g^{\alpha})^{\varphi} = (g^{\varphi})^{\mu(\alpha)}$), there exists a *B*-homomorphism $\psi : G^B \to H$ that makes the following diagram commutative:

$$\begin{array}{ccc} G & \xrightarrow{\lambda} & G^B \\ \varphi & \swarrow & \swarrow & \varphi \\ H & & & & \\ H & & & & \\ \end{array}, \quad \lambda \psi = \varphi.$$

Note that if G is an abelian A-group, then $G^B \cong G \bigotimes_A B$ is the tensor product of a A-module G by a ring B. In [3], it is proved that for any A-group G and any homomorphism $\mu: A \to B$, the tensor completion G^B exists always and it is unique to within an isomorphism.

Let us formulate the notion of a free A-group. Assume that A is an associative ring with unity, X is an arbitrary variety.

Definition 7. A A-group $F_A(X)$ with a set of A-generators X is called a free Agroup with base X if for each A-group G an arbitrary mapping $\varphi_0 : X \to G$ continues to an A-homomorphism $\varphi : F_A(X) \to G$. A set X is called a **set of free A-generators** $F_A(X)$. The power |X| is called the **rank of the group** $F_A(X)$.

Theorem 1. For any X and A, a free A-group $F_A(X)$ exists in the class \mathfrak{M}_A and it is unique to within an A-isomorphism.

Definition 8. Let G_i , $i \in I$, be A-groups. An A-group $*G_i$ is called a free product in the category \mathfrak{M}_A if A-homomorphisms $\varphi_i : G_i \to *G_i$ are such that for any A-homomorphisms $\psi_i : G_i \to H$, where H is an arbitrary A-group, there exists an

A-homomorphism $\psi : *G_i \mapsto H$ that makes the following diagrams commutative:

$$\begin{array}{c|c} G_i \xrightarrow{\varphi_i} *G_i \\ \downarrow & \swarrow \\ H \end{array} \quad (i \in I)$$

and the group $*G_i$ is A-generated by the set $\{\varphi_i(g_i) | g_i \in G_i, i \in I\}$.

From the category argument it follows that the group $*G_i$ is defined uniquely to within an A-isomorphism.

Theorem 2. Let A be a ring containing \mathbb{Z} as a subring, G_i , $i \in I$ be some set of A-groups. Then ${}_{A}^{*}G_i \cong ({}^{*}G_i)^{A}$.

REFERENCES

1. Lyndon R.C. Groups with parametric exponents. Trans. Amer. Math. Soc. 96 (1960), 518–533.

2. Hall Ph., Nilpotent groups. Mathematics, collected translations 12, 1 (1968), 3-36.

3. Myasnikov A.G., Remeslennikov V.N. Degree groups. I. Foundations of the theory and tensor completions. (Russian) *Sibirsk. Mat. Zh.* **35**, 5 (1994), 1106-1118; English transl.: *Siberian Math. J.* **35**, 5 (1994), 986-996.

4. Amaglobeli M.G. G-Manifolds of nilpotent groups and manifolds of power groups. Sovr. Matematika I Eyo Prilozh. (Modern Mathematics and Its Applications) 46 (2007), Algebra, 13-99.

5. Atiyah M.F., Macdonald I. Introduction to commutative algebra. (Russian) Translated from the English by Ju. I. Manin. *Izdat. "Mir", Moscow*, 1972.

6. Myasnikov A.T., Remeslennikov V.N. Definability of the set of Mal'tsev bases and elementary theories of finite-dimensional algebras. II. (Russian) *Sibirsk. Mat. Zh.* **24**, 2 (1983), 97-113.

7. Amaglobeli M., Bokelavadze T. Abelian and nilpotent varieties of power groups. *Georgian Math. J.* **18** (2011) (to appear).

Received 17.05.2011; revised 18.09.2011; accepted 30.10.2011.

Author's address:

M. Amaglobeli Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: mikheil.amaglobeli@tsu.ge