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CATEGORY OF A-GROUPS OVER A RING A
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Abstract. The notion of an A-group over a ring A is introduced in three different ways.

The key idea consists in realizing a tensor completion of an A-group in the form of a concrete

structure using free products with union. As a result, the description of free A-groups and

free A-products is obtained in terms of free group structures.
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Introduction. In the present paper, for an arbitrary associative ring with unity
we define a new category of A-groups in three different ways. In Lyndon [1], the
general notion of an A-group was introduced and some results on free A-groups were
obtained. For a limited class of (so-called binomial) rings, in his famous work [2] F. Hall
formulated for the first time the axiomatic notion of a nilpotent A-group which turned
out very productive in the general theory of nilpotent groups. In [3], A. Myasnikov
and V. Remeslennikov refined Lyndon’s definition of an A-group by introducing one
more additional axiom, according to which all abelian subgroups of an A-group are
ordinary A-modules. This refinement is a natural generalization of an A-module to the
non-commutative case. In [3], the basic notions of the theory of A-groups are given
in refined form and the tensor completion structure which is the key structure in the
category of A groups is defined. The tensor completion is used in this paper in defining
free structures in the category of A-groups, including the notion of an A-free group.

1. Basic definitions and examples.
1.1. Let A denote an arbitrary associative ring with unity, and G a group. Let us

enrich the group language Lgr = ⟨· , −1, e⟩ as follows: Lgr ∪{fα(x)| α ∈ A} where fα(x)
is a unary operation denoted by fα(g) = gα ∀ g ∈ G.

Definition 1. The set G will be called a Lyndon A-group if on it the operations
·, −1, e, fα(x) are defined and the following axioms are fulfilled

I. Group axioms;

II. g1 = g, g0 = e, eα = e,
gα+β = gα · gβ, gαβ = (gα)β,
(h−1gh)α = h−1gαh
for any α, β ∈ A and g, h ∈ G.

Since Axioms I and II are identities, we can speak of a veriety of A-groups, A-
isomorphisms, A-homomorphisms, free A-groups. Let LA denote the category of all
Lyndon A-groups with A-homomorphisms.
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Definition 2. Let G, H ∈ LA. Then a homomorphism φ : G → H is called an
A-homomorphism if (gα)φ = (gφ)α for any g ∈ G, α ∈ A.

1.2. An A-torsion-free group
Definition 3. An element g of a group G ∈ LA is called periodic if gα = e for

some 0 ̸= α ∈ A. A group G that does not contain non-unit periodic elements is called
an A-torsion-free group.

Proposition 1. The set O(g) = {α ∈ A| gα = e} is the right ideal in a ring A (the
ordinal ideal of an element g).

Let us consider a set of axioms(quasi-identities) for groups from the class LA:

∀ e ̸= g ∈ G gα = e −→ g = e.

As easily seen, all A-torsion-free A-groups form a quasi-variety of A-groups.

1.3 A-group categories. In [3], A. Myasnikov and V. Remeslennikov introduced
a new category of A-groups by adding one more axiom

(MR) : ∀ g, h ∈ G [g, h] = 1 −→ (gh)α = gαhα.

It is obvious that all A-modules over a ring A satisfy the (MR) axiom. An example
given in [3] shows that MA is a proper subclass in LA.

Examples. Most of natural examples of A-groups lie in the class MA:

1) An arbitrary group is a Z-group;

2) an abelian divisible group from LQ is a Q-group;

3) a group of the period m is a Z/mZ-group;

4) an arbitrary A-operator group from LA with a ring of operators A is an A-group;

5) a module over a ring A is an abelian A-group;

6) a free A-group from LA is an LA-group from A;

7) an arbitrary nilpotent A group over a binomial ring A, which was introduced by
F. Hall in [2], is an A-group from MA (see Subsect. 2.2);

8) an arbitrary pro-p-group is a Zp∞-group over a ring of integer p-adic numbers
Zp∞ ;

9) an arbitrary pro-finite group is a Ẑ-group, where Ẑ is the total completion Z in
pro-finite topology;

10) a complex (real) unipotent Lie group is a G-group (R-group).
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2. Nilpotent A-groups
2.1 Let c > 1 be a natural number. Denote by Nc,A the category of nilpotent

A-groups of nilpotence step c from the class LA, i.e. of those A-groups for which the
identity

∀ x1, . . . , xc+1 [x1, . . . , xc+1] = 1

is fulfilled.
Denote byN◦

c,A the category of nilpotent groups of step c, for which the (MR) axiom
holds true. The structure of A-groups without the (MR) axiom is very complicated
and that is why only A-groups with the property (MR) are investigated in most papers.
In what follows we will consider only A-groups with this axiom.

2.2. Hall nilpotent groups. In order to introduce this notion we have to restrict
the class of considered rings.

Definition 4. A ring A is called binomial if A is an integrity domain with Z as
a subring and contains, along with every element α, all binomial coefficients(α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
, n ∈ Z.

Definition 5. A nilpotent group G of nilpotence step c is called a Hall A-group
if for any x from G and α from A, an element xα ∈ G is defined uniquely and the
following axioms are fulfilled (x, y, x1, . . . , xn are arbitrary elements from G; α, β are
arbitrary elements from A):

1) x1 = x, xα+β = xαxβ, xαβ = (xα)β;

2) (y−1xy)α = y−1xαy;

3) xα1x
α
2 · · · xαn = (x1, x2 . . . , xn)

ατ2(x)
(α2) · · · τc(x)(

α
c),

where τk(x) is the k-th Petrescu word of x1, x2 . . . , xn.

Let us describe Petrescu words in more detail. Assume that x1, x2 . . . , xn is the base
of a free group F . For each natural k the k-th Petrescu word τk(x1, x2 . . . , xn) = τk(x)
is defined recurrently from the relation

xk1x
k
2 · · · xkn = τ1(x)

kτ2(x)
(k2) · · · τk−1(x)

( k
k−1)τk(x).

In particular, τ1(x) = x1x2 · · · xn; τ2(x) =
∏
i>j

[xi, xj] (mod γ3(F )).

Denote the category of Hall A-groups by HNc,A. We are going to show that the
structure of groups from Nc,A much differs from the structure of groups from HNc,A.
To this end, following [4] we recall the structure of a free A-group in the variety HN2,A.
Our consideration is confined to two binomial rings A = Q[t], A = Q(t), where Q is
the field of rational numbers.

Denote by G0 a free 2-step nilpotent A-group in the category HN2,A with generators
x, y. It is well known that the Maltsev base of this group consists of three elements x,
y, [y, x]. The general form of an element g ∈ G0 is

g = xγyδ[y, x]ε, γ, δ, ε ∈ A.
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In particular, in this group the commutant G′
0 is a free A-module of rank 1 with

generator [y, x].
If now G is a free A-group in the variety N0

2,A, then in [4] it is shown that G′ is a
free A-module of infinite rank and the base of this module is found.

3. Free products of A- groups. The tensor completion, which is the basic
operation in the class of A-groups MA, is investigated in the paper [3]. For modules, it
generalizes in a natural manner the notion of expansion of a ring of scalars to the non-
commutative case [5]. The ideas of this generalization for the class of nilpotent groups
are stated in [6]. Here the tensor completion is used in defining free structures in the
category of A-groups [7], including the notion of an A-free group. For the completeness
of our discussion, we recall here the definition of a tensor completion.

Definition 6. Let G be an A-group, µ : A → B be a ring homomorphism. Then
a B-group GB is called a tensor B-completion of the A-group G if GB satisfies the
following universal property:

1) there exists an A-homomorphism λ : G → GB such that λ(G) B-generates GB,
i.e. ⟨λ(G)⟩B = GB;

2) for any B-group H and A-homomorphism φ : G → H which is compatible with
µ (i.e. such that (gα)φ = (gφ)µ(α)), there exists a B-homomorphism ψ : GB → H
that makes the following diagram commutative:

G
λ //

φ

��

GB

ψ}}|
|
|
|

H

, λψ = φ.

Note that if G is an abelian A-group, then GB ∼= G ⊗
A
B is the tensor product

of a A-module G by a ring B. In [3], it is proved that for any A-group G and any
homomorphism µ : A→ B, the tensor completion GB exists always and it is unique to
within an isomorphism.

Let us formulate the notion of a free A-group. Assume that A is an associative ring
with unity, X is an arbitrary variety.

Definition 7. A A-group FA(X) with a set of A-generators X is called a free A-
group with base X if for each A-group G an arbitrary mapping φ0 : X → G continues
to an A-homomorphism φ : FA(X)→ G. A set X is called a set of free A-generators
FA(X). The power |X| is called the rank of the group FA(X).

Theorem 1. For any X and A, a free A-group FA(X) exists in the class MA and
it is unique to within an A-isomorphism.

Definition 8. Let Gi, i ∈ I, be A-groups. An A-group ∗
A
Gi is called a free

product in the category MA if A-homomorphisms φi : Gi → ∗
A
Gi are such that for

any A-homomorphisms ψi : Gi → H, where H is an arbitrary A-group, there exists an
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A-homomorphism ψ : ∗
A
Gi 7→ H that makes the following diagrams commutative:

Gi
φi //

ψi

��

∗
A
Gi

ψ~~}}
}}
}}
}

H

(i ∈ I)

and the group ∗
A
Gi is A-generated by the set {φi(gi)| gi ∈ Gi, i ∈ I}.

From the category argument it follows that the group ∗
A
Gi is defined uniquely to

within an A-isomorphism.
Theorem 2. Let A be a ring containing Z as a subring, Gi, i ∈ I be some set of

A-groups. Then ∗
A
Gi
∼= (∗Gi)

A.
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