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HEAT TRANSFER IN A CIRCULAR MAGNETOHYDRODYNAMIC CHANNEL
FOR FINITE VALUES OF MAGNETIC REYNOLDS NUMBER
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Abstract. The results of calculations of heat transfer in a circular magnetohydrodynamic

(MHD) channel under the action of an inhomogeneous magnetic field with regard for the

magnetic field induced by electric currents in the fluid, are obtained.
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At present, the works dealing with the processes of heat transfer in MHD channels
under the action of inhomogeneous magnetic fields are, practically, not available. As
usual, we consider completely developed regimes of heat transfer; in some works con-
cerning the development of heat transfer the problem is being solved either for a given
velocity profile (homogeneous, parabolic, Hartmanean), or together with the flow de-
velopment [1,2]. Simultaneous development of temperature and velocity profiles have
been studied in [3,4]. Calculations performed in the above-mentioned works show that
temperature profiles in the channels possess, despite velocity changes along the flow,
no considerable qualitative singularities. Two-dimensionality of the flow affects only
characteristics of heat transfer [1, p.337]. It should also be noted that in [3,4] variation
of the velocity profile along the flow has no singularities.

As is shown in [3-8], the character of the flow in an inhomogeneous magnetic field
is defined by the size and type of its inhomogeneity Depending on the character of
magnetic field inhomogeneity there may occur plane Hartmanean structures of flows,
as well as those with a considerable inhomogeneity in the velocity profile. The existence
of complex velocity structures in some types of inhomogeneous magnetic fields allows
us to presuppose that processes of heat transfer have singularities.

In the present work we present the results of calculations for the heat transform
in a circular MHD channel under the action of the inhomogeneous magnetic field with
regard for the magnetic field induced by electric currents flowing in the fluid (for finite
values of magnetic Reynolds number). As is known, cylindrical surfaces are the most
wide-spread heat transferring surfaces. An exterior magnetic field arises by a cylindrical
two-sided ferromagnetic inductor whose outer magnetowire has current load |z < c1|,
r = r2 + d. Magnetic field of such a system is axial-symmetric, inhomogeneous with
respect to radius and to z, with alternating signs (when passing through the cross-
section it changes its sign z = 0). In the working space of the inductor there is a
circular channel with isolated walls. Velocity structures of the MHD flow in the circular
channel of such an inductor for finite values of magnetic Reynolds number (Rm) are
given in [4]. Although physical properties of the medium (density, electric conductivity,
coefficients of viscosity and heat conductivity) depend strongly on its temperature, in
order to single out the influence of magnetic field inhomogeneity on the heat transfer



Heat Transfer in a Circular Magnetohydrodynamic Channel .... 135

it is desirable at the first stage to neglect this dependence. Under such an assumption,
the magnetohydrodynamic and heat parts of the problem separate, and using the
variable scalar Ψ and vector A magnetic potentials, vorticity ω, current function ψ
and temperature Θ, we can write a system of equations in cylindrical coordinates in
the form
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is the Joule’s heat release; A is the

unit vector-potential component of magnetic field.
Magnetic field b can be defined by summing the exterior (be) and the induced (bi)

field: be = −∆Ψ, bi∇×A and the velocity components can be found by differentiating
the current functions; vr = 1
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. The dimensionless criteria such as

Reynolds number Re = V0h/v, magnetic Reynolds number Rm = µσV0L, parameter of
MHD interactionN = σB2

0h/ρV0, Péclet Pe = V0h/α and Eckert’s Ec = V 2
0 /cp(T2−T1)

numbers, appearing in the system of equations (1), contain the following base values:
V0, the flow rate in the channel; h, the channel height; L, inductor length; B0, magnetic
field size on the channel axis under the ferromagnetic (currentless load); T2 − T1,
difference of wall temperatures.

When writing the boundary conditions, we have used the property of fluid sticking
to walls, magnetic field orthogonality of ferromagnetic surface (µ = ∞) and its vanish-
ing on the perephery: on Γ1Ψ = 0, ∂A/∂r = 0; on Γ2 and Γ5, ∂Ψ/∂r = 0; ∂A/∂r = 0;
∂A/∂z = 0 on Γ3∂Ψ/∂r = 0, A = 0; on Γ4Ψ = −δ, for z1 < −c1; Ψ = δz/c1 for
|z| < c1; and Ψ = δ for z > c1; ∂A/∂n = 0.

For the inlet cross-section of the channel ω = const, ψ = const; these values
were defined with regard for the velocity profile in the developed flow. On the outlet
boundary of the calculated area we have put ”soft” boundary conditions: ∂ω/∂z = 0
and ∂ψ/∂r = 0, on the channel walls (r = r1 and r = r2) ψ = const, approximation of
the boundary conditions for vorticity was of the form
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where j0 and j
M

are, respectively, the wall points on the interior and exterior channel
walls, ∆r is the mesh step with respect to radius.

For temperature on the channel walls we prescribed the following first kind condi-
tions: Θ = 1 for a hot wall and Θ = 0 on a cooler wall. On the magnetic field input
we prescribed a completely stabilized temperature field, and on its outlet, ∂Θ/∂z = 0.

The method of solution of the magnetohydrodynamic part of the problem and the
results of calculations can be found in [4]. The obtained distributions of hydrodynamic
and electromagnetic variables have been organized into a collection of data which later
on were used for the solution of heat problem. The solution of the equation of hear
influx (2) is performed numerically by the method of establishment. We used the
explicit two-layer scheme with the values of variables on the current iteration. Since
the length of the heat stabilization for large values Pe is more than hydrodynamic
one, the calculated region increased with respect to z (in some cases, doubly). The
numerically obtained temperature distribution in the stabilized area coincided with
that obtained analytically [4,6,7].

The character of temperature distribution in a medium depends essentially on the
Péclet number. For small values Pe, temperature distribution corresponds to the
stabilized heat transfer in a circular channel, i.e., it does not, practically, depend on the
flow velocity of the fluid. For Pe = 100, there dominates the convective mechanism of
heat transfer in a medium, and the temperature distribution is defined by the structure
of the flow. The intensity of heat transfer between the wall and the medium varies along
the channel due to the non-uniform MHD flow in the inhomogeneous magnetic field [5].
For example, for Rm = 0, near the cross-section z = 0, the convective heat transfer
from the hot outer surface to the fluid decreases significantly, whereas on the internal
cylindrical surface of the channel the heat transfer processes in the cross-section become
stronger. The increase of intensity in heat transfer processes in the internal wall can
be explained by the existence of jet flow flowing around it on the entire segment of the
channel. In the same cross-section, the fluid discharge in the external wall is minimal
which leads to decreasing the convective heat removal. Mixing by extremum of the
function Nu(z) for small values (Rm = 2) is due to the shift of a part of jet flow [5].
For sufficiently large values of the magnetic Reynolds number (Rm) = 6 · · · 20, the
velocity maximum shiftsf from the lower to the upper wall [5,8], and hence the local
Nusselt’s number on both walls varies.

On the whole, the non-uniform MHD flow strengthens heat transfer between the
wall and the fluid in an inhomogeneous magnetic field.

When Eckert’s number is small for metals in the liquid state, in most cases we may
neglect dissipative processes occurring in them. In the case under consideration, we
have defined the values for the viscous and Joule’s energy dissipation by, respectively,
the combinations Ec/RRe and Ec ·N (2). Since the parameter of MHD interaction in
power units with metallic heat-transfer agents in the liquid state may achieve ∼ 104 [5],
the contribution of the Joulean energy dissipation may turn out to be very essential.

Thus the non-uniformity of MHD flow in an inhomogeneous magnetic field stipulates
the existence of the convective mechanism of heat transfer. Decreasing of convective
heat transfer on some parts of the channel should be taken into account to avoid
overheating and subsequent destruction of the system under high temperatures. On
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the other hand, the non-uniform MHD flow in an inhomogeneous magnetic field can
be used for cooling those areas with high-temperature regime and for heat distribution
over the whole cold agent.
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